Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Graham C.C., McGehee O.C. — Essays in Commutative Harmonic Analysis
Graham C.C., McGehee O.C. — Essays in Commutative Harmonic Analysis



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Essays in Commutative Harmonic Analysis

Àâòîðû: Graham C.C., McGehee O.C.

ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1979

Êîëè÷åñòâî ñòðàíèö: 464

Äîáàâëåíà â êàòàëîã: 30.06.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Saeki, S.      (viii) 144 159 168 202 209 215 222 249 255 “L.
Saeki, S., and Sato, E., [1]      133 167 168 244 246
Saeki, S., [10]      6 73 90
Saeki, S., [11]      361
Saeki, S., [13]      118
Saeki, S., [14]      334
Saeki, S., [15]      90 412
Saeki, S., [16]      90 159 330 403
Saeki, S., [17]      85 410
Saeki, S., [18]      167 168 241
Saeki, S., [19]      168
Saeki, S., [1]      6
Saeki, S., [20]      189
Saeki, S., [21]      226
Saeki, S., [22]      168
Saeki, S., [2]      6
Saeki, S., [3]      268
Saeki, S., [4]      114
Saeki, S., [5]      294
Saeki, S., [6]      312
Saeki, S., [7]      65
Saeki, S., [8]      312 353
Saeki, S., [9]      90 334
Sagher, Y.      listed with “Riviere N.M.”
Saka, K., [1]      133 137 238
Salem, R.      121 179 J.-P.”
Salem, R., [1]      93 100 179
Salem, R., [2]      18
Salinger, D.L., and Varopoulos, N.Th., [1]      159 330 403
Salinger, D.L., [1]      331 405
Sarason, D., [1]      103
Sarason, D., [2]      103
Sato, E.      listed with “Saeki S.”
Sato, E., [1]      222
Saucer principle      331
Schneider, R., [1]      333 407
Schneider, R., [2]      333 407
Schoenberg, I.J., [1]      47
Schoenberg, I.J., [2]      324
Schreiber, B.M.      listed with “Ito T.”
Schreiber, B.M., [1]      73
Schwartz, J., [1]      297
Schwartz, J.T.      listed with “Dunford N.”
Schwartz, L.      71
Schwartz, L., [1]      70 72 313
Schwarz inequality      see “Inequality Cauchy
Section      354
Self, W.M., [1]      407
Semicharacter      122 126
Semigroup, semitopological      122
Semigroup, structure      126 134 143 246
Semigroup, topological      122 125 134
Separation property      355 356
Series, Taylor      127
Series, trigonometric      91
Set of analyticity      324ff.
Set of majorization      403
Set of synthesis      113 324 334 409 410
Set of uniqueness      91ff.
Set, $K_{p}$-      159 269 277 309 328 330 355
Set, $K_{p}$-, (definition)      269
Set, $M_{0}$-      91ff.
Set, $M_{1}$-      91ff.
Set, $R_{\beta}$-      354 356
Set, $U'_{1}$-      92ff.
Set, $U_{0}$-      91ff. 406
Set, $U_{1}$-      91ff.
Set, $\epsilon$-Kronecker      355
Set, $\Lambda(p)$-      410
Set, algebraically independent      159
Set, algebraically scattered      145ff. 160 411
Set, appropriate      66
Set, Calderon      71
Set, Cantor      92 109 167 179
Set, cycle-free      354 412
Set, dense in bZ      222ff.
Set, diagonal      348
Set, Dirichlet      334
Set, dissociate      159ff. 197 199 210 220 325 411
Set, dissociate mod H      159ff.
Set, Ditkin      71 324
Set, ergodic      394 410
Set, H-      100
Set, Helson or non-Helson      (vii) 48ff. 92 110 111 340 394 402ff. 407 409 410 412 Helson”)
Set, I-      409
Set, independent      34 64 65 78ff. 145ff. 159 160 225 269
Set, independent $M_{O}$-      71 ff. 92 118ff. 167 239 257
Set, independent mod H      159
Set, interpolation      157 158
Set, Kronecker or K-      65 85 110 113 114 159 222 225 269 277 309 328 330
Set, Kronecker or K-, (definition)      269
Set, M-      86 91ff.
Set, non-measurable      147 159
Set, non-triangular      324
Set, p-Helson      408
Set, peak      66
Set, perfect      70
Set, Riesz      409
Set, Sidon or non-Sidon      64 66 202 222 348 363 369 372 373 380 404 405 409 410 413 414 Sidon”)
Set, Sigtuna      363 391ff.
Set, strong Ditkin      6 70 71 73 324
Set, symmetric      88
Set, tail-dissociate      199 202
Set, totally disconnected      54
Set, U-      91ff.
Set, ultrathin      88 333
Set, V-Helson      353 412 V-Helson”)
Set, V-interpolation      353ff. 356
Set, V-Sidon      353ff. (see also “Constant V-Sidon”)
Set, Wiener-Ditkin      71
Shapiro, G.S.      (viii) 168
Shapiro, G.S., [1]      67
Shapiro, H.S.      listed with “Fefferman C.”
Shapiro, H.S., [1]      33
Shapiro, H.S., [2]      293
Shatten, R., [1]      312
Sidon, constant      see “Constant”
Sidon, set      see “Set”
Sigtuna, Sweden      394
Silov, G.E.      listed with “Gel’fand I.M. and D.A.”
Silov, G.E., boundary      126 127 134 137 150 165 228 228ff. 361 411 412
Silov, G.E., boundary (definition)      228
Silov, G.E., Idempotent Theorem      see “Theorem”
Simmons, S.M., [1]      238
Simon, A.B.      listed with “Goldberg R.R.”
Simon, A.B., [1]      231
Simon, A.B., [2]      159
Simon, A.B., [3]      159
Singleton      310 416
Sjoelin, P.      listed with “Carleson L.”
Sleijpen, G.L.G., [1]      137
Smith, B.P., [1]      65
Smoothness conditions      3 82 334
SO(N)      319
Soardi, P.M.      listed with “de Michele L.”
Spector, R., [1]      137
Spector, R., [2]      137
Spectrum of a measure      see “Measure”
Spence, L.E.      listed with “Friedberg S.H.”
Spherical harmonic      318
Spine (= $\mathcal{L}(B)$)      136 137
Sreider, Y.A., [1]      133 202 420
Sreider, Y.A., [2]      182
Stafney, J.D., [1]      293
Stegeman, J.D., [1]      348 357
Stegeman, J.D., [2]      66
Stegeman, J.D., [3]      65
Stegeman, J.D., [4]      66 312
Stegeman, J.D., [5]      357
Stein, E.M., and Weiss, G., [1]      282 294 302 318
Stein, E.M., [1]      282 347 297
Stein, E.M., [2]      282
Steinhaus, H., [1]      232
Stewart, J., [1]      47
Stone — Cech compactification      see “Compactification”
Strichartz, R., [1]      407
Stromberg, K.      listed with “Hewitt E.”
Stromberg, K., [1]      238
Stromberg, K., [2]      209
Strong boundary point      132 229 239 242ff. 245
Strong boundary point, definition      228
Structure semigroup      see “Semigroup”
Sulley, L.J., [1]      133
Sup-norm algebra (= uniform algebra)      66 242
Support group of a measure      4 411
Support, theorem about      94
Symbolic (= functional) calculus      see “Functions that operate”
Symmetric, maximal ideal      see “Ideal”
Symmetric, Raikov system      see “Raikov system”
Synthesis (= harmonic synthesis = spectral synthesis)      68ff. 92 101 103 308 313ff. 385ff. 409 416
Synthesis (= harmonic synthesis = spectral synthesis), algebra of      70
Synthesis (= harmonic synthesis = spectral synthesis), bounded      71 76ff. 84 85 410
Synthesis (= harmonic synthesis = spectral synthesis), curve that disobeys      410
Synthesis (= harmonic synthesis = spectral synthesis), fails for sphere      313
Synthesis (= harmonic synthesis = spectral synthesis), set of      see “Set”
Synthesis (= harmonic synthesis = spectral synthesis), singleton is of (for A(G))      416ff.
Synthesis (= harmonic synthesis = spectral synthesis), singleton is of (for V)      310
System, Raikov      see “Raikov”
Tail-dissociate      199 202
Takeda, Z., [1]      47
Talagr, and, M., [1]      182
Talagr, and, M., [2]      222
Tam, K.W.      238
Tamarkin, J.D.      listed with “Hille E.”
Tame      see “Measure”
Taylor — Johnson measure (= i.p. Hermitian probability measure)      see “Measure”
Taylor, J.L.      (vii) 412 R.G.”)
Taylor, J.L., [1]      125 128 133 134 136 137 144 230 246
Taylor, J.L., [2]      133 174 178 231
Taylor, J.L., [3]      125 128 133 246
Taylor, J.L., [4]      137 144
Taylor, J.L., [5]      136 137
Taylor, J.L., [6]      134 136 137
Tensor algebra      88 308ff. 412
Tensor algebra, automorphism      348ff.
Tensor algebra, endomorphism      353
Tensor algebra, tilde      335 357ff. 412
Tensor product      289 308ff.
Tensor product, complete      308
Tensor product, infinite      309 331
Tensor product, n-dimensional      336
Tensor product, of Banach spaces      308 312
Theorem for Fourier — Stieltjes transforms, extension      421
Theorem on $\int|\hat{\mu}|^{2}$, N. Wiener’s      19 225 236 415
Theorem, about support      94
Theorem, Bernstein’s      280 293
Theorem, Bochner’s      41 268
Theorem, closed graph      280 387
Theorem, Drury’s      385
Theorem, Egorov’s      185
Theorem, F., and M.Riesz      28
Theorem, Generalized Purity      176 180 187 189
Theorem, Hausdorff — Young      285
Theorem, idempotent      2ff. 6 32 135 139
Theorem, Jessen — Wintner Purity      176
Theorem, Kns      331 340 347
Theorem, Kronecker      366 392
Theorem, Littlewood — Paley      297
Theorem, Local Peak Set      see “Theorem Rossi’s
Theorem, Lusin’s      43 130
Theorem, Malliavin’s      90 313
Theorem, Marcinkiewicz’s      252 254
Theorem, Marcinkiewicz’s, converses to      261
Theorem, Markov — Kakutani fixed point      46
Theorem, Phragmen — Lindeloef      302
Theorem, Riesz representation      42 47 122 285
Theorem, Riesz — Thorin      285 287 289
Theorem, Rossi’s Local Peak Set      239 241 246
Theorem, Silov Idempotent      358
Theorem, transfer      313
Theorem, Vitali’s      270 273
Theorem, Vitali’s (two-dimensional version)      271
Theorem, Wendel’s      285
Theorem, Wiener — Levy      251 252
Theorem, Wiener — Levy (converses to)      255ff. 282
Theorem, Zafran’s      281ff. 294ff.
Topology, strong      126
Topology, strong, operator      126 291
Topology, weak      126
Topology, weak, operator      126 290 291
Transform, Gel’fand      282 294
Transformation, measure preserving      18
Translation      231ff.
Translation, invariant subspace      68 72 408
trapezoid      418ff.
triangle      418ff.
U-set      see “Set”
Uniform algebra (= sup norm algebra)      66 242
Union question for Helson sets      (vii) 48ff.
Union question for Kronecker sets      65
Union question for sets of bounded synthesis      84
Union question for sets of synthesis      409
Union question for Sidon sets      48ff. 414
Uniqueness      see “Set”
Uno, Y., [1]      293
Urbana      (viii)
V(x,y)      308
V-Helson, constant      see “Constant”
V-Helson, set      see “Set”
V-interpolation set      see “Set”
V-Sidon, constant      see “Constant”
V-Sidon, set      see “Set”
Varopoulos, N.Th.      (vii) 65 71 90 403 407 A.” “Salinger D.L.”)
Varopoulos, N.Th., [10]      324 335 348
Varopoulos, N.Th., [11]      312 361
Varopoulos, N.Th., [12]      354 355 356 357
Varopoulos, N.Th., [13]      65 222 401
Varopoulos, N.Th., [14]      65
Varopoulos, N.Th., [15]      66
Varopoulos, N.Th., [16]      65
Varopoulos, N.Th., [17]      66
Varopoulos, N.Th., [18]      353 412
Varopoulos, N.Th., [19]      66
Varopoulos, N.Th., [1]      174
Varopoulos, N.Th., [20]      66
Varopoulos, N.Th., [2]      215 268
Varopoulos, N.Th., [3]      209 215 265 268
Varopoulos, N.Th., [4]      114
Varopoulos, N.Th., [5]      312 324
Varopoulos, N.Th., [6]      312 324 330
Varopoulos, N.Th., [7]      312 324
Varopoulos, N.Th., [8]      72 324
Varopoulos, N.Th., [9]      121 231
Vermes, P.      listed with “Clume J.”
Vitali’s theorem      see “Theorem”
von Neumann, J., [1]      159
Waelbroeck, L., [1]      261
Weak $\ast$ density number      98
Weiss, G.      listed with “Coifman R.R.” “Kahane J.-P. and M.” “Stein E.M.”
Weiss, M.      listed with “Kahane J.-P. and G.”
Weiss, M., [1]      202
Wells, B.B.Jr.      listed with “Ramsey L.T.”
Wells, B.B.Jr., [1]      408
Wendel, J.G., [1]      293
White, A.J.      listed with “Chow P.S.” “McKilligan S.A.”
White, A.J., [1]      128
Wiener — Hopf operator      136
Wiener — Levy theorem      see “Theorem”
Wiener — Pitt phenomenon      168 202 230
Wiener, N.      19 255
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå