|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Graham C.C., McGehee O.C. — Essays in Commutative Harmonic Analysis |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Kernel of a semigroup 133
Kernel of a set 69
Kernel, de la Vallee Poussin 70 391 419
Kernel, Dirichlet 97
Kernel, Fejer 101 419 306
Kernel, Gaussian 55 65
Kns Theorem see “Theorem”
Koerner, T.W. (vii) 92 121 159 167 394 412 Y.)”
Koerner, T.W., [1] 66 93 118 121
Koerner, T.W., [2] 121 222 412
Koerner, T.W., [3] 66 121
Koerner, T.W., [4] 93 121
Koerner, T.W., [5] 93 121
Koerner, T.W., [6] 121 347
Koerner, T.W., [7] 121
Koerner, T.W., [8] 121
Krein, M.G., [1] 47
Kuhlmann, D., [1] 126
Kurosh, A., [1] 191
L(B) 136
L(G) 136
L-algebra see “L-subalgebra”
L-homomorphism 123
L-ideal 128ff. 228
L-ideal, not prime 130
L-ideal, prime 128ff.
L-span 344 345
L-subalgebra 123 134 244 411
L-subalgebra, generated by Bernoulli convolutions 182 411
L-subalgebra, prime 128 129 130 132 152 153 165
L-subspace 122
Lacunary sequence 7 48 306
Lagniappe 418
Larson, R. 238
Lawson, J.D., Liukkonen, J.R., and Mislove, M.W., [1] 137
Leblanc, N., [1] 261
Leblanc, N., [2] 407
Leblanc, N., [3] 407
Leibenson, Z.L., [1] 260 407
Lemma, Drury — Herz 65 357
Lemma, Helson Translation (1.2.2) 4
letter 198
Levy, P. 255
Levy, P., [1] 251
Lin, C., and Saeki, S., [1] 180 182
Lindahl, L.-A., and Poulsen, F., [1] (xiii) 64 114 121 159 257 354 357 401 410
Lipschitz classes see “Function”
Littlewood Conjectures 2 7 11ff.
Littlewood — Paley theory 281 294 297
Littlewood, J.E. listed with “Hardy G.H.”
Littman, W., [1] 72
Liukkonen, J.R. listed with “Lawson J.D. and M.W.”
Local Peak Set Theorem see “Theorem”
Logarithm of a measure 136
Lohoue, N., [1] 293 294
Lohoue, N., [2] 293
Lohoue, N., [3] 72
Lohoue, N., [4] 294
Lohoue, N., [5] 294
Lohoue, N., [6] 294
Loomis, L., [1] 364
Lopez, J.M., and Ross, K.A., [1] 64 65 202 410 415
Ludvik, P., [1] 293
Ludvik, P., [2] 169
Lumer, G., [1] 41
Lusin’s problem on rearrangements 408
Lusin’s theorem see “Theorem”
Lust, F. (publishing now under the name F. Lust-Piquard), [1] 65
Lust, F. (publishing now under the name F. Lust-Piquard), [2] 324
M (a mapping) 309 312 338 355
Macbeath, A.M., [1] 37
MacLean, A. listed with “Graham C.C.”
Majorization, set of see “Set”
Makarov, B.M., [1] 217
Malliavin, P. (vii) (listed also with “Katznelson Y.”)
Malliavin, P., and Malliavin-Brameret, M.-P., [1] 64 410
Malliavin, P., [1] 71 90
Malliavin, P., [2] 71
Malliavin, P., [3] 71 313
Malliavin, P., [4] 261
Malliavin, P., [5] 90
Malliavin’s theorem see “Theorem”
Mandelbrojt, S. listed with “Agmon S.”
Marcinkiewicz, J. 251
Marcinkiewicz, J., [1] 255 260
Marcinkiewicz’s theorem see “Theorem”
Markov — Kakutani Fixed Point Theorem see “Theorem”
Mason, D.K., [1] 280
Maximal, element of , proper 245
Maximal, ideal space 126 150 165 218 282 366 411
Maximal, ideal space of CCMA is discrete 137
Maximal, ideal, asymmetric 230 239ff. 361
Maximal, ideal, idempotent 156
Maximal, ideal, symmetric 168 229
McGehee, L.B.C. (v)
McGehee, O.C. listed with “Katznelson Y.”
McGehee, O.C., and Woodward, G.S., [1] 66
McGehee, O.C., [1] 93
McGehee, O.C., [2] 407
McGehee, O.C., [3] 103
McGehee, O.C., [4] 407
McGehee, O.C., [5] 66
McGehee, O.C., [6] 18
McGehee, O.M. (v)
McKilligan, S.A., and White, A.J., [1] 128
Measure with real spectrum 411
Measure, algebra see “Algebra”
Measure, Bernoulli convolution see “Bernoulli”
Measure, Cantor — Lebesque 179 182
Measure, conjugate 304
Measure, D-ergodic 138 142 143 173 175 209
Measure, Hausdorff 93
Measure, Hermitian 138 141 304
Measure, i.p. (= independent power) 138ff. 171 176
Measure, idempotent see “Idempotent”
Measure, independent power (= i.p.) 138ff. 171 176
Measure, infinite convolution 169 174ff.
Measure, infinite product 169ff.
Measure, invertible 136
Measure, logarithm of 136
Measure, monotrochic 138 141 142 155 173 175 421
Measure, Riesz product see “Riesz product”
Measure, spectrum of 138 139
Measure, strongly continuous 3 18ff.
Measure, strongly i.p. 138 143 146 161 176
Measure, strongly monotrochic 138 143
Measure, strongly tame 138 213
Measure, symmetric (= Hermitian) 138 141 304
Measure, tame 138 141 142 155 171 178 188 209 210 411 421
Measure, tame Hermitian i.p.probability see “Next entry”
Measure, Taylor — Johnson 141 173 189ff. 195 210 230
Measure-preserving transformation 18
Measures, joint spectrum of 144
Mela, J.-F. 182
Men’shov, D.E., [1] 92
Metric thinness conditions 92
Meyer, Y. (vii) 202
Meyer, Y., and Rosenthal, H.P., [1] 73
Meyer, Y., [1] 84 85 93 179 334 410
Meyer, Y., [2] 73
Meyer, Y., [3] 73
Meyer, Y., [4] 409
Meyer, Y., [5] 407
Meyer, Y., [6] 333 407
Milicer-Grazewska, H., [1] 109 238
Miller, C.B., and Rajagopalan, M., [1] 133
Miller, R.R., [1] 249
Mislove, M.W. listed with “Lawson J.D. and J.R.”
Monotrochic see “Measure”
Moran, W. (vii) (listed also with “Bailey W.J.” “Brown G.” “Graham C.C. and G.”)
| Moran, W., [1] 128
Moran, W., [2] 144 174 189 195 215 231
Moran, W., [3] 269 280 331
Mostert, P. listed with “K.H. Hofmann”
Multiplicity, set of see “Set M-”
Multiplier algebra see “Algebra”
N (an algebra) 354 355
Net, tail-dissociate 199 202
Newman, D.J., [1] 405
Newman, D.J., [2] 408
Newman, D.J., [3] 409
Newman, S.E., [1] 137
Newman, S.E., [2] 137
Non-measurable set see “Set”
Non-triangular set see “Set”
Null on a set, pseudomeasure that is 93
Oberlin, D.M., [1] 293
Order of a subspace 98
Order of an element 379
Ordinal number 81 98 102 103
Orsay (vii) 18
P (a mapping) 309 312 355
Paalman-de Miranda, A.B., [1] 133
Pade, O., [1] 202
parallel 348
Paris (vii) (viii)
Parker, W.A. listed with “Bachelis G.F. and K.A.”
Parreau, F. listed with “Graham C.C. and B.” “Host B.”
Peyriere, J., [1] 209
Peyriere, J., [2] 198 203
Phillips, R.S. listed with “Hille E.”
Phillips, R.S., [1] 47
Pichorides, S.K. 6 11 17
Pichorides, S.K., [1]—[5] 18
Pierce, R.S. 407
Pigno, L, and Saeki, S., [1] 390 409
Pigno, L, and Saeki, S., [3] 385
Pigno, L, and Saeki, S., [4] 421
Pigno, L., and Smith, B.P., [1] 27
Pisier, G., [1] 66 348
Pisier, G., [2] 66 348
Pisier, G., [3] 404
Pisot number 84 92 93 179 410
Pitt, H.R. listed with “Wiener N.”
Plessner, A., [1] 228 238 368
Point, critical see “Critical”
Point, derivation see “Derivation”
Point, strong boundary see “Strong”
Polar decomposition 127
Pollard, H., [1] 85
Polygon 73
Polynomials with -additive ranges 370ff.
Positive-definite see “Function”
Poulsen, F. listed with “Lindahl L.-A.”
Price, J.F., [1] 293
Prime, L-ideal see “L-ideal”
Prime, L-subalgebra see “L-subalgebra”
Probabilistic methods 34 66 90 112
Proper maximal see “Maximal”
Property one 60ff.
Pseudomeasure 93ff. 286 364 392 394
Purity theorem see “Theorem”
Pyateckii-Sapiro, I.I. 92 114
Pyateckii-Sapiro, I.I., [1] 103 104
r(f) 355
Rad 126 141 213 220 238ff.
Radon — Nikodym derivative 42
Rago, J., [1] 159
Ragozin, D.L., [1] 137
Raikov system 125 129ff. 132 133 152 154 157 158 159 161 175 243 411
Raikov system, singly generated 168 169 243
Raikov system, symmetric 167 168
Raikov, D.A. listed with “Gel’fand I.M. and G.E.”
Raikov, D.A., [1] 228 238 368
Rajagapolan, M. listed with “Miller C.B.”
Rajchman, A., [1] 32
Ramsey, L.T. (viii) 37 385 409
Ramsey, L.T., and Wells, B.B., [1] 27
Ramsey, L.T., [1] 27
Real-analytic see “Function”
Real-entire see “Function”
Rearrangement of a function 408
refinement 129 135 136 141 143 176
Regular on an interval, pseudomeasure that is 94
Rennison, J.F., [1] 128
Rennison, J.F., [2] 128
Representation of , Fourier 283ff.
Ressel, P. listed with “Christensen J.B.R.”
Richards, I., [1] 90
Richardson, L.F., [1] 6
Rickart, C.E., [1] 138 139 229 235 241
Rickert, N.W. listed with “Kaufman R.”
Rickert, N.W., [1] 133
Rider, D., [1] 64 415
Rider, D., [2] 261
Rider, D., [3] 38 410
Rider, D., [4] 279 280
Rider, D., [5] 261
Rider, D., [6] 261
Rider, D., [7] 66
Riemann Sums 390
Riesz products 7 16 30 31 48 65 66 169 195 196ff. 215 245 258 266 383 384 412 413 414
Riesz products, based on , , and a 219ff.
Riesz products, based on , and a 198ff. 258
Riesz products, D-ergodic 209
Riesz products, generalized 209 222
Riesz products, independent power 204 209
Riesz products, tame 209ff.
Riesz representation theorem see “Theorem”
Riesz Theorem, F., and M. see “Theorem”
Riesz, F. 197
Riesz, F., [1] 196
Ritter, G., [1] 209 222
Ritter, G., [2] 209 222
Ritter, G., [3] 170
Riviere, N.M., and Sagher, Y., [1] 255 261
Rosenthal, H.P. 47 (listed also with “Meyer Y.”)
Rosenthal, H.P., [1] 90
Rosenthal, H.P., [2] 66
Rosenthal, H.P., [3] 368 385
Rosenthal, H.P., [4] 73
Rosenthal, H.P., [5] 47
Rosenthal, H.P., [6] 84
Rosenthal, H.P., [7] 411
Ross, K.A. listed with “Bachelis G.F. and W.A.” “Hewitt E.” “Lopez J.M.”
Ross, K.A., [1] 66
Ross, K.A., [2] 126
Rossi, H. listed with “Gunning R.C.”
Rossi, H., [1] 241 242
Rossi’s Local Peak Set Theorem see “Theorem”
Rotation group SO(n) 319
Roth, K.F. listed with “Halberstam H.”
Roth, K.F., [1] 37
Roy den, H.L., [1] (xiii)
Rudin — Shapiro elements 33ff. 37 287
Rudin, W. listed with “Helson H. Kahane J.-P. and Y.” “Kahane J.-P.”
Rudin, W., [10] 348 410 411
Rudin, W., [11] 121 394
Rudin, W., [12] 33
Rudin, W., [13] 260
Rudin, W., [1] (xiii) 6 34 41 56 84 114 135 159 167 168 252 259 262 268 277 289 314 406 419
Rudin, W., [2] 122 130
Rudin, W., [3] (xiii) 4 138 139 281 302
Rudin, W., [4] 260
Rudin, W., [5] 260
Rudin, W., [7] 280
Rudin, W., [8] 238
Rudin, W., [9] 6
Ryll-Nardzewski, C. listed with “Hartman S. and J.-P.” “Hartman S.”
Ryll-Nardzewski, C., [1] 409
|
|
|
Ðåêëàìà |
|
|
|