Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
McConnell J.C., Robson J.C. — Noncommutative Noetherian Rings
McConnell J.C., Robson J.C. — Noncommutative Noetherian Rings



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Noncommutative Noetherian Rings

Авторы: McConnell J.C., Robson J.C.

Аннотация:

Provides a comprehensive account of the major developments in this important branch of ring theory which have taken place over the past 30 years. Much of the material which comprises this volume has not appeared anywhere in book form before, and the authors have improved and simplified many of the accounts available in journals. The first few chapters form a ``basic course'' which introduces the reader to the subject. Subsequent chapters are each relatively self-contained, so that readers interested in a particular subject can easily consult the sections they want. Specific topics covered include rings arising from matrices, differential operators, and Lie algebras. Contains extensive references.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2001

Количество страниц: 636

Добавлена в каталог: 11.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Lie’s theorem      14.5.3
Linearization      13.1.9
Link, graph      4.3.7
Link, second layer      4.3.7
Local number of generators      11.6.13
Localizable      4.0.0
localization      2.1.4 (see also “Quotient ring”)
Localization, $K_0$ of      12.1.12 12.4.9
Localization, and prime ideals      4.3.1 ff 4.4.1
Localization, at $\mathcal{F}$      10.3.5
Localization, at set of ideals      10.3.3
Localization, GK dimension of      8.2.13
Localization, global dimension of      7.4.1 ff
Localization, Krull dimension of      6.5.3
Localization, monic      7.9.3
Localization, of derivation ring      15.1.25
Localization, stable range of      11.5.2
Locally finite dimensional      8.1.17
Locally nilpotent derivation      14.6.4
Locally nilpotent ring      13.8.5
Loewy series      4.1.2
Lying over      10.2.8
Lying over in enveloping algebra      14.2.5 14.5.4
Lying over in fixed ring      10.5.15
Lying over in group ring      10.5.6
Lying over in normalizing extension      10.2.9
Lying over in PI ring      13.8.14
Martindale quotient ring      10.3.5
Maschke’s Theorem      7.5.6 10.5.11
Matrix ring(s)      1.1.1 ff
Matrix ring(s), $K_0$ of      12.1.13
Matrix ring(s), and Morita equivalence      3.5.5
Matrix ring(s), being Goldie      3.1.5
Matrix ring(s), being Noetherian      1.1.2
Matrix ring(s), embeddings in      13.4.1 ff
Matrix ring(s), generic      13.1.9 13.10.10
Matrix ring(s), GK dimension of      8.2.7
Matrix ring(s), global dimension of      3.5.10
Matrix ring(s), identities of      13.3.2
Matrix ring(s), Krull dimension of      6.5.1
Matrix ring(s), ranks of      11.5.11 ff
Matrix ring, triangular      see “Triangular matrix ring”
Matrix units, set of      3.2.6
Matrix units, standard set of      2.2.11
Maximal annihilator      2.3.2
Maximal condition      0.1.5
Maximal K-order      5.3.13
Maximal order      5.1.1 ff 13.9.8
Maximal quotient ring      10.3.5
Module, $\alpha$-torsion      6.2.18
Module, $\mathbb{Z}$-graded      12.4.10
Module, ad g-      14.3.2
Module, Artinian      0.1.2
Module, complement      2.2.3
Module, completely faithful      5.7.3
Module, compressible      6.9.3
Module, critical      6.2.9
Module, dual      3.4.4
Module, essential      2.2.1
Module, faithful      0.3.2
Module, filtered      7.6.8
Module, flat      7.1.4
Module, free-filtered      7.6.15
Module, free-graded      7.6.5
Module, g      14.1.3
Module, generator      3.5.3
Module, graded      7.6.3
Module, holonomic      8.5.8
Module, irreducible      0.1.2
Module, isotypic      0.1.2
Module, locally finite dimensional      8.1.17
Module, monoform      4.6.4
Module, Morita invariants of      3.5.8
Module, Noetherian      0.1.2
Module, of differentials      15.1.8 15.6.1
Module, of quotients      2.1.17
Module, prime      4.3.4
Module, progenerator      3.5.4
Module, projective      3.5.2
Module, projective-graded      7.6.6 12.2.1
Module, reduced rank at P of      4.6.7
Module, reduced rank of      4.1.2
Module, reflexive      5.1.7
Module, semisimple      0.1.2
Module, simple      0.1.2
Module, singular      10.3.6
Module, stable range of      6.7.2
Module, stably free      11.1.1
Module, stably free-graded      12.2.10
Module, strictly triangular g-      14.1.13
Module, torsion      2.1.17
Module, torsionfree      3.4.2
Module, torsionless      3.4.2
Module, triangular g-      14.1.13
Module, uniform      2.2.5
Module, |G|-torsionfree      10.5.9
Monic, localization      7.9.3
Monic, polynomial identity      13.1.2
Monoform module      4.6.4
Morita context      1.1.6
Morita context, and fixed rings      7.8.3
Morita context, being Noetherian      1.1.7
Morita context, correspondence of primes in      3.6.2
Morita context, correspondence of primitives in      3.6.5
Morita context, of equivalent orders      3.1.14
Morita context, prime      3.6.5
Morita context, ring of      1.1.6
Morita equivalence/ent      3.5.5
Morita equivalence/ent, and category equivalence      3.5.7
Morita equivalence/ent, characterization of      3.5.6 3.7.5
Morita equivalence/ent, not to domain      12.7.16
Morita equivalence/ent, to Dedekind domain      5.2.12
Morita equivalence/ent, to simple domain      12.7.5
Morita invariants of module      3.5.8
Morita invariants of ring      3.5.10
Multiplicatively closed (m.c.) set      2.1.1
Multiplicity      8.4.7
Nakai conjecture      15.6.5
Nakayama’s Lemma      0.3.10
Nil set      0.2.5
Nilpotent, action      14.1.13
Nilpotent, element      0.2.5
Nilpotent, ideal      0.1.11
Nilpotent, ideals in PI rings      13.2.1 ff
Nilpotent, index      3.2.7
Nilpotent, Lie algebra      14.1.6
Nilpotent, locally action      14.1.13
Nilpotent, locally derivation      14.6.4
Nilpotent, locally ring      13.8.5
Nilpotent, nil subrings being      2.3.7 6.3.7
Nilpotent, prime radical      6.3.8 13.10.9
Noetherian, domain being Ore      2.1.15
Noetherian, module      0.1.2
Noetherian, ring      0.1.6
Noncommutative geometry      15.6.6
Normal element      4.1.10
Normal element in enveloping algebra      14.3.4
normalizer      10.3.8
Normalizing extension      10.1.3
Normalizing extension, almost      1.6.10
Normalizing sequence      4.1.13
Normalizing sequence in enveloping algebra      14.3.14
Nullstellensatz      9.0.0 ff
Nullstellensatz for derivation rings      15.1.22
Nullstellensatz for enveloping algebras      9.1.8 9.4.22 14.4.1
Nullstellensatz for group rings      9.1.8 9.4.22
Nullstellensatz for PI rings      13.10.3
Nullstellensatz over k      9.1.4
Orbit theory      14.10.2
Order(s)      3.1.1 ff
Order(s) in quotient ring      3.1.2
Order(s), classical      5.3.5
Order(s), equivalent      3.1.9
Order(s), K-      5.3.6
Order(s), maximal      5.1.1 13.9.1
Order(s), maximal K      5.3.13
Order(s), non-Noetherian centre of      5.3.7
Order(s), of fractional ideal      3.1.12
Order(s), right equivalent      5.6.5
Ordinal degree of      6.1.9
Ore condition      2.1.6 (see also “Localization”)
Ore condition, and AR property      6.8.21
Ore condition, and ideal invariance      6.8.14
Ore condition, for monic polynomials      7.9.3
Ore, domain      2.1.14
Ore, extension      1.9.2
Ore, set      2.1.13
Outer automorphism(s)      7.8.12
Outer automorphism(s), group of      7.8.12
Partitive, finitely      8.3.17 8.7.3
Partitive, finitely, derivation ring being      15.1.21
Partitive, finitely, enveloping algebra being      8.4.9
Patch, closed      4.6.14 11.6.6
Patch, continuity      4.6.16
Patch, open      4.6.14
Patch, topology      4.6.14
Permeated      11.4.2
Permeated theorem      11.7.13
PI ring      13.0.0 ff
PI ring, characterization of      5.3.10
PI ring, generic matrix      13.1.19
PI ring, GK dimension of      8.7.6
PI ring, universal      13.1.15
Poincare — Birkhoff — Witt theorem      1.7.5 1.9.7 1.9.9
Polycentral      4.1.13
Polycyclic by finite group      1.5.12
Polynomial      4.1.13
Polynomial(s)      see also “Skew polynomial(s) ring”
Polynomial(s), algebra, identity      13.1.15
Polynomial(s), alternating      13.1.12 13.5.4
Polynomial(s), Capelli      13.5.5
Polynomial(s), central      13.5.2
Polynomial(s), element      6.9.17
Polynomial(s), evaluation of      13.5.2
Polynomial(s), Hilbert      8.4.6
Polynomial(s), identity      13.1.2
Polynomial(s), identity ring      13.1.6
Polynomial(s), monic      13.1.2
Polynomial(s), multilinear      13.1.8
Polynomial(s), over division ring      9.6.1 ff 11.2.9 11.2.15
Polynomial(s), t-alternating      13.5.4
POSET      6.0.0
Poset, codeviation of      6.1.8
Poset, deviation of      6.1.2
Poset, factor of      6.1.1
Positive cone      12.1.3
Posner’s theorem      13.6.5
Pri-ring      see “Principal ideal ring”
Prime ideal(s)      0.2.3
Prime ideal(s), $\sigma$-cyclic      10.6.11
Prime ideal(s), affiliated      4.3.4
Prime ideal(s), affiliated sequence of      4.4.6
Prime ideal(s), and extension rings      see “Cutting down going going incomparability lying
Prime ideal(s), and uniform dimension      4.6.1 ff
Prime ideal(s), associated      4.3.9 4.4.2 4.4.4
Prime ideal(s), G      10.5.4
Prime ideal(s), height of      4.1.11
Prime ideal(s), in enveloping algebras      14.2.1 ff
Prime ideal(s), in fixed rings      10.5.13 ff
Prime ideal(s), in Morita context      3.6.1 ff
Prime ideal(s), in polynomial rings      10.6.1 ff
Prime ideal(s), J----      11.6.6
Prime ideal(s), linked      4.3.7
Prime ideal(s), minimal      0.2.8
Prime ideal(s), minimal, in semiprime ring      2.2.14 3.2.1
Prime ideal(s), regular      13.7.3
Prime ideal(s), semistable      6.9.8
Prime ideal(s), unstable      6.9.8
Prime ring      0.2.3
Prime ring, Asano      5.2.7
Prime ring, Dedekind      5.2.10
Prime, bimodule      4.3.4
Prime, module      4.3.4
Prime, radical      0.2.4 0.2.8
Prime, spectrum      0.2.3
Primitive ideal      0.3.4
Primitive ideal in enveloping algebra      14.4.1 ff
Primitive polynomial ring      9.6.11
Primitive property      9.2.3
Primitive ring      0.3.2
Principal ideal ring(s)      0.1.8
Principal ideal ring(s), $B_1(k)$ being      1.3.9
Principal ideal ring(s), decomposition of      4.1.9
Principal ideal ring(s), matrix rings being      7.11.7 11.3.8
Principal ideal ring(s), matrix rings over      3.4.10
Principal ideal ring(s), modules over      5.7.19
Principal ideal ring(s), skew polynomials being      11.2.12
Principal ideal ring(s), structure of semiprime      3.4.9
Principal ideal theorem      4.1.11
Principal ideal theorem, generalized      4.1.13
Progenerator      3.5.4
Projective class group      12.1.5
Projective dimension      7.1.2
Projective extended module      12.2.11
Projective module      3.5.2
Projective resolution      7.1.2
Projective-graded      7.6.6 12.2.1
Properness      10.2.14
Quantum groups      14.10.10
Quillen, lemma      9.7.3
Quillen, Suslin theorem      11.2.2
Quillen, theorem      12.6.13
Quotient division ring      2.1.14
Quotient ring(s)      2.1.3 3.1.1
Quotient ring(s), and localization      6.8.1 ff
Quotient ring(s), construction of      2.1.12
Quotient ring(s), Martindale      10.3.5
Quotient ring(s), maximal      10.3.5
Quotient ring(s), universal property of      2.1.4
Radical, Artin      4.1.7
Radical, Jacobson      0.3.8
Radical, of Artinian ring      0.1.12
Radical, prime      0.2.4 0.2.8
Radical, property      9.1.2
Rank of stably free module      11.1.1
Rank, cancellation      11.5.20
Rank, elementary      11.3.10
Rank, general linear      11.1.14
Rank, Goldie      14.0.0
Rank, H-----      11.3.13
Rank, reduced      4.1.2
Rank, reduced, with respect to P      4.6.7 11.6.14
Rank, stable      11.3.4
Rees ring      12.6.2
Reflexive module      5.1.7
Regular element      2.1.2
Regular local ring      15.2.8
Regular prime      13.7.3
Regular ring      7.7.1
Resolution, finite free      11.1.6
Resolution, flat      7.1.4
Resolution, injective      7.1.3
Resolution, projective      7.1.2
Ring(s)      see also “Algebra”
Ring(s), $\mathbb{Z}$-graded      12.4.10
Ring(s), adjoining 1 to      2.3.8
Ring(s), AR      4.2.3
Ring(s), Artinian      0.1.6
Ring(s), Asano      5.2.7
Ring(s), bounded      6.4.7
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте