Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
McConnell J.C., Robson J.C. — Noncommutative Noetherian Rings
McConnell J.C., Robson J.C. — Noncommutative Noetherian Rings



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Noncommutative Noetherian Rings

Авторы: McConnell J.C., Robson J.C.

Аннотация:

Provides a comprehensive account of the major developments in this important branch of ring theory which have taken place over the past 30 years. Much of the material which comprises this volume has not appeared anywhere in book form before, and the authors have improved and simplified many of the accounts available in journals. The first few chapters form a ``basic course'' which introduces the reader to the subject. Subsequent chapters are each relatively self-contained, so that readers interested in a particular subject can easily consult the sections they want. Specific topics covered include rings arising from matrices, differential operators, and Lie algebras. Contains extensive references.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2001

Количество страниц: 636

Добавлена в каталог: 11.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Equivalent, orders      3.1.9
Equivalent, right orders      5.6.5
Essential right ideal      2.2.1
Essential right ideal, contains regular element      2.3.5
Essential right ideal, has regular generators      3.3.7
Essential submodule      2.2.1
Essentiality      10.2.11
Evaluation      13.5.2
Exponential growth      8.1.8
Ext      7.1.12
Extension      1.6.2
Extension, almost centralizing      8.6.6
Extension, almost normalizing      1.6.10
Extension, automorphic      10.1.3
Extension, c-integral      5.3.2
Extension, central      13.1.11
Extension, centralizing      10.1.3
Extension, essential      2.2.1
Extension, finite      10.1.2
Extension, integral      5.3.2 10.7.0 13.8.1
Extension, normalizing      10.1.3
Extension, Ore      1.9.2
Faith — Utumi theorem      3.2.6
Faithful module      0.3.2
Faithful module, completely      5.7.3
FBN      6.4.7
FBN, Artinian quotient ring of      6.8.16 ff
FBN, characterization of      6.10.4
FBN, Jacobson conjecture for      6.4.15
FBN, PI ring      13.6.6
FBN, second layer condition for      4.3.14
Filtered homomorphism      7.6.8
Filtered K-algebra      9.4.9
Filtered module      7.6.8
Filtered ring      see “Associated graded ring”
Filtration(s), equivalent      8.6.12
Filtration(s), finite dimensional      8.1.9
Filtration(s), good      8.6.3
Filtration(s), having bounded difference      8.6.12
Filtration(s), of derivation ring      15.1.19
Filtration(s), of module      7.6.7
Filtration(s), of ring      1.6.1
Filtration(s), standard      1.6.2 7.6.7 8.1.9
Filtration(s), translate of      8.6.14
Fitting’s Lemma      2.3.2
Fixed ring      7.8.1 ff 10.5.1
Flat, (n, m)-generically      9.3.12 9.3.16
Flat, dimension      7.1.4
Flat, faithfully      7.2.3 15.2.13
Flat, generically      9.3.2
Flat, module      7.1.4
Flat, resolution      7.1.4
Forster — Swan theorem      11.7.4
Fractional ideal      3.1.11
Fractional ideal, order of      3.1.12
Fractional ideal, reflexive      5.1.8
Free filtered      7.6.15
Free graded      7.6.5
G-domain      9.3.9
G-ideal      9.3.9
G-ring      13.9.12 14.5.6
Gabriel dimension      6.10.0
Gabriel H-condition      6.10.4
Gelfand — Kirillov dimension      8.0.0 ff 8.1.11 8.1.16
Gelfand — Kirillov dimension and transcendence degree      8.2.14
Gelfand — Kirillov dimension of $gr\Delta(A)$      15.4.7
Gelfand — Kirillov dimension of $\mathcal{A}(V, \delta, \Gamma)$      14.8.13
Gelfand — Kirillov dimension of derivation ring      14.3.2 14.3.6
Gelfand — Kirillov dimension of modules over $\Delta(A)$      15.4.1 ff
Gelfand — Kirillov dimension of PI ring      13.10.6
General linear group      11.1.11
General linear range      11.1.12
General linear rank      11.1.14
Generating subspace for module      8.1.9
Generating subspace for ring      8.1.9
Generative      5.5.3
Generator      3.5.3
Generic flatness      9.3.1 ff
Generic regularity      4.6.11
GK dimension      see “Gelfand — Kirillov dimension”
Global dimension      7.0.0 ff 7.1.8
Global dimension of $gr\Delta(A)$      15.4.7
Global dimension of $\mathcal{A}(V, \delta, \Gamma)$      14.8.13
Global dimension of commutative rings      7.1.15 15.2.8
Global dimension of derivation ring      15.3.2 15.3.7
Global dimension, weak      7.1.9
Going down in fixed ring      10.5.15
Going down in group ring      10.5.12
Going down in PI ring      13.8.13
Going up in fixed ring      10.5.15
Going up in normalizing extension      10.2.10
Going up in PI ring      13.8.14
Goldie, dimension      2.2.10
Goldie, normalizing extension being      10.1.11
Goldie, rank      14.0.0
Goldie, rank polynomial      14.0.0
Goldie, ring      2.3.1
Goldie, Theorem      2.3.6
Goldie, Theorem\l      3.1.7
Graded division ring      10.3.19
Graded homomorphism      7.6.3 12.2.3
Graded ring      1.6.3 (see also “Associated graded ring”)
Graded ring element, degree of      1.6.4
Graded ring element, homogeneous      1.6.3 10.3.19
Graded ring element, homogeneous component of      1.6.7
Graded ring element, leading term of      1.6.4
Graded ring, $K_0$ of      12.1.10
Graded ring, $\mathbb{Z}$      12.4.10
Graded ring, graded right ideal of      1.6.7
Graded ring, group      10.3.18
Graded simple      10.3.19
Grading      7.6.2
Grading, product      12.2.5
Grading, translate of      7.6.2
Grading, trivial      12.2.2
Grothendieck group ($K_0$)      12.0.0 ff
Grothendieck group ($K_0$) of category      12.4.3
Grothendieck group ($K_0$) of derivation ring      15.4.8
Grothendieck group ($K_0$) of filtered ring      12.3.5 12.6.13
Grothendieck group ($K_0$) of graded ring      12.1.10
Grothendieck group ($K_0$) of ring      12.1.2
Group ring (skew, crossed product)      1.5.1 ff
Group ring (skew, crossed product), $K_0$ of      12.5.1 ff 12.7.1
Group ring (skew, crossed product), being constructive      9.4.12
Group ring (skew, crossed product), being Noetherian      1.5.11 1.5.12
Group ring (skew, crossed product), being normalizing extension      10.1.4
Group ring (skew, crossed product), being regular      7.7.5
Group ring (skew, crossed product), being simple      1.8.3 7.8.12
Group ring (skew, crossed product), crossed product      1.5.8
Group ring (skew, crossed product), fixed ring of      7.8.1 ff 10.5.1
Group ring (skew, crossed product), GK dimension of      8.2.9 8.2.18
Group ring (skew, crossed product), global dimension of      7.5.6 7.8.1
Group ring (skew, crossed product), having finite endomorphism ring      9.5.5
Group ring (skew, crossed product), having projectives stably free      12.3.3
Group ring (skew, crossed product), Krull dimension of      6.5.5 6.6.1
Group ring (skew, crossed product), Nullstellensatz for      9.1.8 9.4.22
Group ring (skew, crossed product), poly cyclic by finite      1.5.12
Group ring (skew, crossed product), prime ideals in      10.5.1 ff
Group ring (skew, crossed product), second layer condition in      4.3.14
Group ring (skew, crossed product), skew      1.5.4
Group ring (skew, crossed product), stably free ideals of      11.2.8
Group ring (skew, crossed product), twisted      1.5.8
Group ring (skew, crossed product), universal property of      1.5.2 1.5.6
Heisenberg group      1.5.3 1.5.10 8.2.17
Heisenberg Lie algebra      1.7.7
Hereditary ring(s)      5.2.2
Hereditary ring(s), and idealizers      5.6.1 ff
Hereditary ring(s), and idempotents      7.8.9
Hereditary ring(s), being simple      7.11.1 ff
Hereditary ring(s), examples of      7.8.14
Hereditary ring(s), fixed ring of      7.8.8
Hereditary ring(s), Krull dimension of      6.2.8
Hereditary ring(s), prime PI      13.9.16
Hereditary ring(s), structure of      5.4.1 ff
Hilbert polynomial      8.4.6
Hilbert polynomial in somewhat commutative algebra      8.6.19
Hirsch number      6.5.5
Holonomic module      8.5.8
Holonomic module over derivation ring      15.6.4
Homogeneous, component      1.6.7 7.6.3
Homogeneous, element      1.6.3 7.6.3 10.6.7
Homogeneous, module w.r.t. dimension function      6.8.8
Homomorphism, filtered      7.6.7
Homomorphism, graded of modules      7.6.3
Homomorphism, graded of rings      12.2.3
Homomorphism, strict filtered      7.6.12
Hopkins’ theorem      0.1.13
Ideal invariance      6.4.16 6.8.13
Ideal invariance, and GK dimension      8.3.16
Ideal(s) (right, left), annihilator      2.1.10 2.2.15
Ideal(s) (right, left), augmentation      12.2.3 14.3.8 15.1.18
Ideal(s) (right, left), characteristic      8.7.6
Ideal(s) (right, left), class group      12.1.6
Ideal(s) (right, left), completely prime      0.2.2
Ideal(s) (right, left), critical      6.3.4
Ideal(s) (right, left), dense      10.3.4
Ideal(s) (right, left), essential      2.2.1
Ideal(s) (right, left), fractional      3.1.11
Ideal(s) (right, left), G-stable      10.5.4
Ideal(s) (right, left), generative      5.5.3
Ideal(s) (right, left), graded      1.6.7 10.3.19
Ideal(s) (right, left), integral      3.1.13
Ideal(s) (right, left), invariant      6.8.13
Ideal(s) (right, left), invertible      4.2.5 5.2.5
Ideal(s) (right, left), isomaximal      5.5.2
Ideal(s) (right, left), localizable      4.0.0
Ideal(s) (right, left), nilpotent      0.1.11
Ideal(s) (right, left), prime      0.2.3
Ideal(s) (right, left), primitive      0.3.4
Ideal(s) (right, left), semimaximal      5.8.5
Ideal(s) (right, left), semiprime      0.2.7
Ideal(s) (right, left), semiprimitive      0.3.9
Ideal(s) (right, left), stable      1.8.2
Ideal(s) (right, left), subisomorphic      3.3.4
Ideal(s) (right, left), T      13.1.4
Ideal(s) (right, left), trace      10.5.16
Idealizer ring      1.1.11 5.5.1
Idealizer ring, and differential operators      15.5.13
Idealizer ring, chain conditions of      1.1.12
Idealizer ring, example (in Weyl algebra) of      1.3.10
Idealizer ring, global dimension of      7.5.11 ff
Idealizer ring, Krull dimension of      6.5.2
Idealizer ring, multiple      5.8.5
Identity, algebra polynomial      13.1.15
Identity, alternating      13.1.12
Identity, monic      13.1.2
Identity, multilinear      13.1.8
Identity, polynomial      13.1.2
Identity, stable      13.1.16
Identity, standard      13.1.3
Incoihparability      10.2.13 10.4.1
Incoihparability in enveloping algebra      14.2.8
Incoihparability in PI ring      13.8.14
Incoihparability in skew polynomial ring      10.6.6 14.2.9
Incoihparability, theorem      10.4.15
Index of nilpotency      3.2.7
Injective, dimension      7.1.3
Injective, envelope      4.3.2
Injective, resolution      7.1.3
Integral, c-      5.3.2
Integral, domain      0.2.2
Integral, element      5.3.2
Integral, extension      10.7.0 13.8.1
Integral, ideal      3.1.13
Integrally closed      5.3.3
Integrally closed, completely      5.1.3
Intersection condition      4.3.17
Invariant(s), basis property      11.1.2
Invariant(s), ideal      6.8.13
Invariant(s), ideal, ring      6.8.13
Invariant(s), in enveloping algebra      14.1.15
Invariant(s), ring of      see “Fixed ring”
Invariant(s), weakly, ideal      6.8.13
Invertible ideal      4.2.5 5.2.5
Irreducible module      0.1.2
Irreducible ring      6.8.17
Isomaximal      5.5.2
Isotypic      0.1.2
Jacobi identity      1.7.1
Jacobson conjecture      6.10.4
Jacobson conjecture, example of      4.3.20 4.7.3
Jacobson conjecture, for FBN rings      6.4.15
Jacobson, derivation ring being      15.1.22
Jacobson, PI ring      13.10.3
Jacobson, radical      0.3.8
Jacobson, ring      9.1.2 ff 9.7.1
Jordan — Holder, theorem      0.1.3
Jordan — Holder, weights      14.4.10
Kaplansky’s Theorem      13.3.8
Koszul resolution and global dimension      7.3.16
Koszul resolution and Krull dimension      6.5.9
Kothe conjecture      0.2.9
Kothe conjecture for PI rings      13.2.5
Krull dimension      6.0.0 ff
Krull dimension, and GK dimension      8.3.18
Krull dimension, and monic localization      7.9.4
Krull dimension, classical      6.4.4
Krull dimension, of $gr\Delta(A)$      15.4.7
Krull dimension, of $\mathcal{A}(V, \delta, \Gamma)$      14.8.13
Krull dimension, of derivation ring      15.3.7
Krull dimension, of enveloping algebra      14.7.6
Krull dimension, of fixed rings      7.8.8
Krull dimension, of module      6.2.2
Krull dimension, of normalizing extension      10.1.10
Krull dimension, of ring      6.2.2 6.3.1
Krull dimension, of simple rings      7.11.1 ff
Krull dimension, of U(sl(2, k))      8.5.12 ff
Krull dimension, symmetry of      6.4.10 14.10.8
Krull socle      6.2.14
Krull, domain      5.1.10
Krull, ring      5.8.1
Kurosch problem      13.8.9
Leading coefficient of polynomial      1.2.8 7.9.5 9.6.6
Leading right ideal      1.2.9 1.8.5 9.4.16
Length in skew Laurent polynomial ring      6.9.14 10.6.7
Length of chain      Notation
Lie algebra(s)      1.7.1
Lie algebra(s), abelian      14.1.5
Lie algebra(s), acting locally nilpotently      14.1.13
Lie algebra(s), acting nilpotently      14.1.13
Lie algebra(s), acting semisimply      14.1.12
Lie algebra(s), adjoint representation of      14.1.2
Lie algebra(s), algebraic      14.7.2
Lie algebra(s), completely solvable      7.5.7 14.1.8
Lie algebra(s), eigenvalue of      14.1.16
Lie algebra(s), eigenvector of      14.1.15
Lie algebra(s), Heisenberg      1.7.7
Lie algebra(s), ideal of      14.1.2
Lie algebra(s), invariant of      14.1.16
Lie algebra(s), module over      14.1.3
Lie algebra(s), nilpotent      14.1.6
Lie algebra(s), over ring      1.7.8
Lie algebra(s), representation of      1.7.1
Lie algebra(s), semi-invariant of      14.1.15
Lie algebra(s), semidirect product of      1.7.11
Lie algebra(s), semisimple      14.1.12
Lie algebra(s), solvable      6.6.2 14.1.7
Lie algebra(s), triangular module over      14.1.3
Lie algebra(s), universal enveloping algebra of      1.7.2
Lie product      1.7.1
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте