Авторизация
Поиск по указателям
Grillet P.A. — Abstract Algebra
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Abstract Algebra
Автор: Grillet P.A.
Аннотация: About the first edition:
"The text is geared to the needs of the beginning graduate student, covering with complete, well-written proofs the usual major branches of groups, rings, fields, and modules...[n]one of the material one expects in a book like this is missing, and the level of detail is appropriate for its intended audience." (Alberto Delgado, MathSciNet)
"This text promotes the conceptual understanding of algebra as a whole, and that with great methodological mastery. Although the presentation is predominantly abstract...it nevertheless features a careful selection of important examples, together with a remarkably detailed and strategically skillful elaboration of the more sophisticated, abstract theories." (Werner Kleinert, Zentralblatt)
For the new edition, the author has completely rewritten the text, reorganized many of the sections, and even cut or shortened material which is no longer essential. He has added a chapter on Ext and Tor, as well as a bit of topology.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2-nd edition
Год издания: 2007
Количество страниц: 669
Добавлена в каталог: 01.06.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Modules See also module
Modules, injectively equivalent 510
Modules, isomorphic 320
Modules, projectively equivalent 507
Monad See triple
Monoid 3 614
Monoid of endomorphisms 20
Monoid, commutative 3
Monoid, free 6 120
Monoid, free commutative 7 126
Monomial 6 125
Monomial, leading 149 351
Monomorphism 19 107 584
Monomorphism of modules 320 393
Monomorphism, essential 409
Monomorphism, split 395 404
Moore, E. 543
Moore, J.C. 613
Morphism 582. See also homomorphism
Morphism of algebraic varieties 312
Morphism of diagrams 591
Morphism of T -algebras 614
Morphism, codiagonal 601
Morphism, diagonal 601
Morphism, identity 582
Morphism, natural 587
Morphism, zero 600
Multihomomorphism 443
Multilinear mapping 443
Multilinear mapping, alternating 524 525
Multilinear mapping, symmetric 522
Multiple, integer 4 11 106 114—115
Multiple, least common 135 136 142
Multiplication 2
Multiplicity of root 122 125
Nagata, M. 376
Nakayama, I. 376
Nakayama’s Lemma 302 303 376
Nielsen, J. 27
Nilradical 274
Nilsemigroup 577
Nine lemma 395 397 470
Node 583
Noether — Lasker theorem 276
Noether, E. vii 105 146 273 295 529 535 534
Noether’s theorem 535
Norm of element 215 215—219
Norm on vector space 247
Normal series 70 72
Normal series, ascending central 90 639
Normal series, central 89
Normal series, descending central 89
Normal series, equivalent 71 348
Normalization 283
normalizer 65 67
Notation, additive 2 4 11 13
Notation, multiplicative 2
Nullstellensatz 308
Number of elements 639 641
Number, algebraic 236
Number, cardinal See cardinal number
Number, ordinal See ordinal number
Number, p-adic 245 246
Object 582
Object, initial 609 612
Object, terminal 609 612
Object, zero 600
Operation, associative 3
Operation, binary 1 559
Operation, commutative 3
Operation, componentwise 43
Operation, constant 2 559
Operation, idempotent 540
Operation, n -ary 2 559
Operation, order preserving 540
Operation, partial 2 559
Operation, unary 2 559
Opposite of element 8
Opposite of sum 11
Orbit 55
ord 632
Order of center 57
Order of conjugacy class 56
Order of element of a group 24
Order of group 16
Order of orbit 55
Order of permutation 62
Order of polynomial 239
Order of power series 130
Order of quotient group 21
Order of subgroup 16 17
Order relation 625 631
Order relation, opposite 626
Order relation, partial 625
Order relation, total 625
Order, degree lexicographic 148
Order, degree reverse lexicographic 148
Order, lexicographic 148
Order, monomial 148 351
Order, term 148
Ordered set See also partially ordered set. See also preordered set
Ordered set, totally 625 423
Ordered set, well 629 633
Ordinal number 631 631—639
Ordinal number, limit 634
Ordinal number, successor 633 634
Origin 583
Orthogonality of characters 388 389
Ostrowski, A. 241 247
Ostrowski’s theorem 249
Partially ordered set 625 423.
Partially ordered set, dual 540
Partially ordered set, Noetherian 626
Partially ordered set, opposite 627 540
Partition 16 45 55 62
Path 583
Path, empty 583
Peirce, B. 104 515
Permutation 9 58—63
Permutation, conjugate 62
Permutation, disjoint 60
Permutation, even 59
Permutation, fixed point of 60
Permutation, odd 59
Permutation, sign of 60
Permutation, support of 60
Place 255
Polygon, regular 9 226
Polynomial 120 126 119—130.
Polynomial equation vii 1 191
Polynomial equation of degree 2 vii 1 191 205
Polynomial equation of degree 3 191 205—207
Polynomial equation of degree 4 191 207—208
Polynomial equation of degree 5 191
Polynomial equation, general 223 223—225
Polynomial in one variable 120 119—125
Polynomial in several variables 126 125—130
Polynomial of degree 2 205
Polynomial of degree 3 205—207 209 210
Polynomial of degree 4 208—209 210
Polynomial, characteristic 216 345
Polynomial, constant 120 126
Polynomial, cyclotomic 211 211—215
Polynomial, elementary symmetric 177 224
Polynomial, general 223
Polynomial, homogeneous 129
Polynomial, irreducible 136—138 143—145 233
Polynomial, minimal 343 345
Polynomial, monic 121
Polynomial, primitive 142 258
Polynomial, separable 169
Polynomial, splitting 191
Polynomial, symmetric 224
pos 616
Power 3 10 642
Power series 130 130—133 245 254 267—269
Power, exterior 525
Power, symbolic 298
Power, symmetric 523
Power, tensor 519
Preimage See inverse image
Preordered set 423 428 583 585 612 616.
Preordered set, directed 423
Presentation 34 31—37
Presentation, projective 471
Preserve colimits 598 608
Preserve limits 597 608 621
Preston, G.B. 5
Primitive Element Theorem 171
Principal ideal domain 133 133—138 254 293 294 295 336—342 403 405 411 497
PRODUCT 2 592 595.
Product of cardinal numbers 642 643 644
Product of elements 2
Product of ideals 112 269
Product of left ideal and submodule 319 320
Product of left ideals 319
Product of morphisms 582 598
Product of ordinal numbers 635
Product of subsets 4
Product, balanced 435 443
Product, empty 2
Product, semidirect 93 92—94 102
Product, torsion See Tor
Projection from direct product 44 325 568
Projection from group extension 95
Projection from product 592
Projection from semidirect product 93
Projection to quotient algebra 561
Projection to quotient group 20
Projection to quotient module 321
Projection to quotient ring 113
Projection to quotient set 561
PSL 79
Pullback 593 604
Pullback of modules 397 398 400 423 429 433 593
Pushout 595
Pushout of modules 399 398—401 423 429 448
Q, quaternion group 35 69
Quadrature of circle 229
Quotient of ideals 273
Quotient, group 20
Quotient, module 321—322
Quotient, ring 113
Quotient, universal algebra 562
R((X )) 131
R(X ) 124
R-Algs 584
RAD 274
Radical 375
Radical of ideal 274
Radical, Jacobson 375 374—377
Radical, nil 274
RANGE 19 113 321
Rank of module 334 335
Rational fraction 124 129 139—141
Rational fraction, symmetric 224
Recursion 637 638
Redei, L. 148 580
Redei’s theorem 148 580
Reduction 27 29 38 39
Refinement of normal series 71 348
Relation See also order relation
Relation of type T 565
Relation, defining 33
Relation, equivalence 561
Relation, group 27 32
Remak, R. 48
Representation of group 380 382 380—392
Representation of group, complex 389 389—392
Representation of group, equivalent 380 382
Representation of group, irreducible 381 384
Representation of group, regular 380
Representation of group, trivial 380
Resolution 471—478
Resolution, bar 505 502—505
Resolution, flat 496
Resolution, free 471 504
Resolution, injective 476 476—478 491 508
Resolution, projective 471 471—476 491 494 507 508
Resultant 176 176—178
Ring 105 105—154 273—318 366—379.
Ring extension 277 277—284 515
Ring extension, finitely generated 278 288
Ring extension, integral 280 280—282 287 288
Ring of endomorphisms 316 332 360 364 370—374
Ring of fractions 285 285—290
Ring of matrices 106 332 360—362 364 370 371 377 515
Ring of polynomials 119—130 147 142—144 276 305—306 308 309 510—514 515 517 522 577
Ring with identity 105
Ring with unity 104
Ring, affine 311
Ring, associative 106
Ring, blown-up 457
Ring, boolean 554
Ring, change of 440 441 461
Ring, commutative 106 115—119 269—314 318
Ring, complete 267 267—272
Ring, coordinate 310 310—314
Ring, division 116 209 334 336 360 384 538
Ring, euclidean 138
Ring, free commutative 129
Ring, group 120 382;
Ring, isomorphic 107
Ring, Jacobson semisimple 378 377—379
Ring, left Artinian 348 349 377—379
Ring, left hereditary 411 411—414 497 499 510
Ring, left Noetherian 347 349 407 429
Ring, left primitive 372 372—374 377
Ring, local 287 403
Ring, Noetherian 146 146—148 287 296
Ring, nonassociative 106
Ring, opposite 317 332 361 442
Ring, reduced 532
Ring, regular 109 370 379
Ring, right Artinian 348
Ring, right Noetherian 347
Ring, right primitive 372
Ring, semigroup 120 124
Ring, semiprimitive 378
Ring, semisimple 359 366 366—370 377 383 402 404 510
Ring, simple 360
Ring, valuation See valuation ring
Ring, von Neumann regular 109 370 379
Rings 584
Root 122. See also root of unity
Root of unity 157
Root of unity, primitive 157 211
Root, multiple 122
Root, simple 122 123
Russell’s paradox 631
R[X ] 120
R[[X ]] 130
Schanuel’s Lemma 507
Schering, E. 45
Schmidt, O. 48
Schreier, O. 41 71 97 217 231 236
Schreier’s theorem 71 348;
Schreyer, F. 355
Schreyer’s theorem 355
Schur — Zassenhaus theorem 102
Реклама