Авторизация
Поиск по указателям
Grillet P.A. — Abstract Algebra
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Abstract Algebra
Автор: Grillet P.A.
Аннотация: About the first edition:
"The text is geared to the needs of the beginning graduate student, covering with complete, well-written proofs the usual major branches of groups, rings, fields, and modules...[n]one of the material one expects in a book like this is missing, and the level of detail is appropriate for its intended audience." (Alberto Delgado, MathSciNet)
"This text promotes the conceptual understanding of algebra as a whole, and that with great methodological mastery. Although the presentation is predominantly abstract...it nevertheless features a careful selection of important examples, together with a remarkably detailed and strategically skillful elaboration of the more sophisticated, abstract theories." (Werner Kleinert, Zentralblatt)
For the new edition, the author has completely rewritten the text, reorganized many of the sections, and even cut or shortened material which is no longer essential. He has added a chapter on Ext and Tor, as well as a bit of topology.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2-nd edition
Год издания: 2007
Количество страниц: 669
Добавлена в каталог: 01.06.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Group, cyclic 14 21 24 25 35 46 68 94 100 507
Group, defined by generators and relations See presentation
Group, derived 83 84
Group, dihedral 9 14 19 20 26 34 37 68 88
Group, finite 11 13 14 16 43—104
Group, free 29 27—31 505—506
Group, fundamental 8 18 20 37 43 83
Group, general linear 76 81
Group, generated by subject to 33
Group, generated by a subset 14
Group, indecomposable 47 49
Group, isomorphic 20
Group, Klein four 9 13 44
Group, metabelian 83
Group, nilpotent 89 89—92
Group, p- 45 57 64 67 84 91
Group, profinite 204 434
Group, projective special linear 78 81 82
Group, quaternion 35
Group, quotient 20 20—23
Group, simple 73 73—76 81 82
Group, solvable 83 83—88 219 391
Group, special linear 77 77—82
Group, symmetric 8 58—64 88
Group, transitive 75
Group, value 248
Grps 583
Hall theorems 86—88
Hall, P. 86
Halmos, P. 640
Hamilton, W.R. 37 105 515
Haupidealsatz 303
Hausdorff, F. 628
Height of prime ideal 303 304 303—306
Helder’s theorem 100
Hensel, K. 243 261
Hensel’s Lemma 263 264 270
Hilbert basis theorem 147
Hilbert theorem on syzygies 511
Hilbert, D. 105 147 218 307 510 511
Hilbert’s Nullstellensatz 307 308
Hilbert’s Theorem 90 218
Hoelder, O. 74 100
Hom 415 415—423 433 442 589
Homology 463—471
Homology, singular 463
Homomorphism of algebras 382 516
Homomorphism of bimodules 418
Homomorphism of direct systems 423
Homomorphism of fields 117 156
Homomorphism of graded algebras 517
Homomorphism of groups 18 18—25
Homomorphism of inverse system 430
Homomorphism of lattices 542
Homomorphism of modules 320 320—324
Homomorphism of rings 107 112—115
Homomorphism of rings with identity 107
Homomorphism of T -algebras 614
Homomorphism of universal algebras 560
Homomorphism theorem for algebras 516
Homomorphism theorem for complexes 470
Homomorphism theorem for fields 156
Homomorphism theorem for graded algebras 517
Homomorphism theorem for groups 23
Homomorphism theorem for lattices 542
Homomorphism theorem for modules 322
Homomorphism theorem for rings 114
Homomorphism theorem for universal algebras 562
Homomorphism theorem in abelian category 603
Homomorphism, boundary 463 464
Homomorphism, central 516
Homomorphism, coboundary 463 467
Homomorphism, connecting 465 466 469 478 484 485
Homomorphism, evaluation 122 128 448
Homomorphism, inclusion 18 113 156 561
Homomorphism, K - 158
Homomorphism, natural 417
Homotopic 465
Homotopy 465 470
Hopkins — Levitski theorem 379
Hopkins, C. 379
Hopkins’s theorem 379
Hull, injective 410 408—410
Hurewicz, W. 393
Ideal 110 516 552
Ideal of quotient ring 114
Ideal of semigroup 578
Ideal, -primary 275
Ideal, associated prime 276
Ideal, fractional See fractional ideal
Ideal, generated by elements 293
Ideal, generated by monomials 149
Ideal, generated by subset 110
Ideal, graded 517
Ideal, irreducible 275
Ideal, left 318
Ideal, maximal 111 117 134 282 301 308
Ideal, membership problem 150
Ideal, minimal left 360
Ideal, nil 377
Ideal, nilpotent 376
Ideal, of 110 117
Ideal, order 632 551
Ideal, primary 275 287
Ideal, prime 117 133 274 281—282 287 298 302—306
Ideal, principal 110 552
Ideal, proper 110
Ideal, right 318
Ideal, semiprime 275 308
Ideal, two-sided 318 516
Idempotent 370 376 377
Idempotent, central 557
Identity See also identity element
Identity element 2
Identity element of ring 106
Identity element, left 12
Identity of type T 566
Im, image 19 113 321
Image 603
Image of homomorphism 19 113 321
Image, direct 18 113 321 563
Image, homomorphic 568
Image, inverse 18 113 321 563
Indeterminate 120 126 130 131
INDEX 16 17
Index of centralizer 56
Index of normalizer 65
Index of stabilizer 55
Index, nilpotency 90
Index, ramification 258 258—261
Induction, Artinian 627
Induction, Noetherian 626
Induction, ordinal 635 635—639
Induction, strong 627 636
Induction, transfinite 629
Infimum See greatest lower bound
Injection to coproduct 594
Injection to direct sum 325
Injection to free group 29
Injection to free product 40
Injection to group extension 95
Injection to semidirect product 93
INTEGER 1
Integer, algebraic 109 283 297 297—300
Integer, Gauss 109 137
Integer, modulo n 21 114
Integer, p-adic 245 246 266
Intersection of congruences 562
Intersection of ideals 110
Intersection of primary ideals 275—276
Intersection of subalgebras 560
Intersection of subgroups 15
Intersection of submodules 318
Intersection, reduced 276
interval 548 557
Inverse limit 431 429—434
Inverse limit of exact sequences 432
Inverse limit of modules 431 432
Inverse limit of sets 433
Inverse limit of universal algebras 574
Inverse of element 8
Inverse of product 10
Inverse, left 12
Isometry 9
Isomorphism 584 602
Isomorphism of algebraic varieties 313
Isomorphism of categories 588
Isomorphism of fields 156
Isomorphism of groups 20
Isomorphism of lattices 542 543
Isomorphism of modules 320 393
Isomorphism of partially ordered sets 633 542
Isomorphism of rings 107
Isomorphism of totally ordered abelian groups 251
Isomorphism of universal algebras 561
Isomorphism Theorems for groups 23—26
Isomorphism Theorems for modules 323
Isomorphism Theorems for rings 115
Isomorphism theorems for universal algebras 563
Isomorphism theorems, first 25
Isomorphism theorems, second 25
Isomorphism theorems, third 25
Isomorphism, K - 160
Isomorphism, natural 587
Jabobson density theorem 371 373
Jacobson, N. 370 372 376 377
Jech, T. 581 631 640
Join See least upper bound
Jordan block 345
Jordan form 345 342—346
Jordan — Hoelder theorem 74 348
Jordan, C. 74 342
Kempf, G. 166
ker , kernel 19 113 321
Ker, equivalence relation 561
Kernel 602
Kernel of homomorphism 19 113 321 396 593
Klein, F. 1
Kramer, D. viii
Kronecker, L. 45
Krull intersection theorem 301
Krull, W. vii 48 105 203 251 300 301 303 304 305
Krull-Schmidt theorem 50 349
Krull’s Hauptidealsatz 303 305
Krull’s Theorem 203; 305
Kuerschak, J. 243
Kuratowski, C. 628
l.u.b See least upper bound
Lagrange, J. 1
Lagrange’s Theorem 16
Lasker, E. 273
Lattice 541 539—558 573 576 624
Lattice of normal subgroups 548
Lattice of subgroups 548 552 553
Lattice of submodules 546
Lattice of subsets 539 540 549 553 554
Lattice, Boolean 554 553—558 573 624
Lattice, complete 543 543—545
Lattice, complete Boolean 557
Lattice, distributive 549 549—553 577 624
Lattice, generalized Boolean 557
Lattice, modular 545 545—548 573 624
Lattice, subdirectly irreducible 576
Laurent series 131 131—133 245 254
Laws, absorption 542
Lazard, D. 450 455
Lazard’s theorem 455
LCM 135
Length of module 348
Length of normal series 70 348
Lift 402 471 472 477
Light’s test 5 35
Light’s test, fails 5
Light’s test, passes 5
LIMIT 592 591—593.
Limit of sequence 233 243—245 247—248 268 462
Limit, directed See inverse limit
Limit, finite 598
Limit, inductive See direct limit
Limit, inverse See inverse limit
Limit, projective See inverse limit
Limit, standard 596
localization 287 285—290
Louis XIV 633
Lying over 281 282
MacLane, S. vii 184 188 393 463 490 500 532 581 609
MacLane’s theorem 188 532
MacNeille, H. 544
MacNeille’s theorem 544
Malcev’s theorem 580
Mal’cev, A.I. 580
MAP See also mapping
Map, closure 543
Map, tensor 434 436 444
Mapping 582. See also multilinear mapping
Mapping, biadditive balanced See bihomomorphism
Mapping, bilinear 434 435
Mapping, middle linear See bihomomorphism
Mapping, n -linear See multilinear mapping
Mapping, order preserving 542
Mapping, polynomial 312
Mapping, regular 312
Maschke, H. 383
Maschke’s Theorem 383 506
Matrix of homomorphism 332 450
Matrix, column finitary 334
McCarthy, P. 203
Meet See greatest lower bound
Metatheorem 540 585
Module 278 279 315—366 615.
Module of finite length 348 379
Module of fractions 442 456
Module over a PID 336—342
Module over polynomial rings 342 350 510—514
Module, Artinian 300 348
Module, blown-up 457
Module, complete 458
Module, completely reducible 363
Module, cyclic 318 323
Module, divisible 405
Module, double dual 448
Module, dual 419 448 448—451
Module, faithful 317
Module, finitely generated 274 318
Module, finitely presented 453 453—455
Module, flat 450 450—456 461 495 496
Module, free 330 329—338
Module, homology 464
Module, indecomposable 349
Module, injective 403 403—410 412 414 420 422 429 452 484 491 492
Module, left 315
Module, Noetherian 296 347
Module, projective 402 401—403 411 419 448—451 480 486 491 492 494
Module, quotient 279
Module, right 317
Module, semisimple 363 362—364 371 379
Module, simple 359 360
Module, torsion 339
Module, torsion-free 339
Module, unital 315 317
Реклама