The most accessible introduction to the theory and practice of multivariate analysis
Multivariate Statistical Inference and Applications is a user-friendly introduction to basic multivariate analysis theory and practice for statistics majors as well as nonmajors with little or no background in theoretical statistics. Among the many special features of this extremely accessible first text on multivariate analysis are:
* Clear, step-by-step explanations of all key concepts and procedures along with original, easy-to-follow proofs
* Numerous problems, examples, and tables of distributions
* Many real-world data sets drawn from a wide range of disciplines
* Reviews of univariate procedures that give rise to multivariate techniques
* An extensive survey of the world literature on multivariate analysis
* An in-depth review of matrix theory
* A disk including all the data sets and SAS command files for all examples and numerical problems found in the book
These same features also make Multivariate Statistical Inference and Applications an excellent professional resource for scientists and clinicians who need to acquaint themselves with multivariate techniques. It can be used as a stand-alone introduction or in concert with its more methods-oriented sibling volume, the critically acclaimed Methods of Multivariate Analysis.
Vector(s), zero vector (0)401 Wilks’ test statistic122—126 Wilks’ test statistic in canonical correlation321—326 Wilks’ test statistic in multivariate regression289—299 Wilks’ test statistic, Chi-square approximation126 Wilks’ test statistic, effect of each variable132—134 Wilks’ test statistic, F-approximation125—126 Wilks’ test statistic, properties of124—126