|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Rencher A.C., Barnett V., Bradley R.A. (Ed) — Multivariate Statistical Inference and Applications |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Expected value of sample variance 3
Expected value of sum or product of random variables 5
Expected value of univariate random variable [E(y)] 2
Experimentwise error rates 2
F-test(s) and 67
F-test(s), partial F-test for discriminant functions 211
F-test(s), partial F-test in MANOVA 110
F-test(s), tables of power of the F-test 423—426
Factor analysis 377—398
Factor analysis and grouped data 393—394
Factor analysis and regression 394—395
Factor analysis of correlation matrix 379—380. 383 385—386. 392
Factor analysis of covariance matrix 377—388. 391—395
Factor analysis, and principal components 361 377
Factor analysis, applicability of the model 392—393
Factor analysis, assumptions 378—379
Factor analysis, communality 379 381
Factor analysis, eigenvalues 381—383
Factor analysis, eigenvectors 381
Factor analysis, factor scores 391—392
Factor analysis, factors 377—379
Factor analysis, factors, interpretation of 378 381 390—391
Factor analysis, fit of the model 392—393
Factor analysis, loadings 378 381—385
Factor analysis, loadings, estimation of 381—385
Factor analysis, loadings, estimation of, comparison of methods 385—386
Factor analysis, loadings, estimation of, iterated principal factor method 384
Factor analysis, loadings, estimation of, maximum likelihood method 384—385
Factor analysis, loadings, estimation of, principal axis method 383—384
Factor analysis, loadings, estimation of, principal component method 381—383
Factor analysis, loadings, estimation of, principal factor method 383—384
Factor analysis, model 378—379
Factor analysis, model, scale invariance of 379—380
Factor analysis, nonlinear models 394
Factor analysis, number of factors to retain 381 386—387
Factor analysis, robustness to nonnormality 394
Factor analysis, rotation of loadings in the model 380
Factor analysis, rotation of sample loadings and factors 387—390
Factor analysis, rotation of sample loadings and factors, interpretation of factors 390—391
Factor analysis, rotation of sample loadings and factors, oblique rotation 389—390
Factor analysis, rotation of sample loadings and factors, oblique rotation, pattern matrix 390
Factor analysis, rotation of sample loadings and factors, oblique rotation, structure matrix 390
Factor analysis, rotation of sample loadings and factors, orthogonal rotation 388—389
Factor analysis, rotation of sample loadings and factors, orthogonal rotation, equamax 389
Factor analysis, rotation of sample loadings and factors, orthogonal rotation, quartimax 389
Factor analysis, rotation of sample loadings and factors, orthogonal rotation, varimax 388
Factor analysis, specific variance 379
Factor analysis, tests of significance 386—387
Factor analysis, three-mode factor analysis 394
Factor analysis, total variance 382
Fisher’s LSD test 134
Fracture data 171
Function of a random variable, distribution of 38—40
Gauss — Markov theorem, multivariate 284—285
Gauss — Markov theorem, univariate 268
Generalized linear models 266
Generalized quadratic form 54—55
Generalized variance 8—9 40
Glucose data 35
H matrix 122 203
Height-weight data 4
Hierarchical linear models 306
Hotelling’s see “-tests”
Hypothesis tests see “Tests of hypotheses”
Idempotent matrix 414
Identity matrix 400
Imputation see “Missing data”
Independence and zero covariance 5 46—47
Independence, two random variables 5
Independence, two random vectors 46
Influence and canonical correlation 333
Influence and canonical variates 333
Influence and classification analysis 262
Influence and discriminant analysis (descriptive) 206
Influence and multivariate regression 301—303
Influence and principal components 372—373
Intercorrelation, index of 20—22
Intercorrelation, index of, condition number 20
Intercorrelation, index of, variance inflation factor 21
Inverse matrix 407
j vector and J matrix 400
Jackknife 327
Jacobian 39
Largest root test see “Roy’s test”
Latent root regression 363 370
Latent roots see “Eigenvalues”
Lawley — Hotelling test 130—131 292 295—296
Lawley — Hotelling test, F-approximations 130—131
Lawley — Hotelling test, table of critical values 441—445
Least squares estimators 267—268 281—282
Length of a vector 402
Library data 397
Likelihood function 49
Likelihood ratio 62—65
Likelihood ratio test for discriminant functions 209
Likelihood ratio test in canonical correlation 321—326
Likelihood ratio test in multivariate regression 289—299
Likelihood ratio test in principal components 349—351 357—359
Likelihood ratio test in random-x regression 279
Likelihood ratio test, comparing covariance matrices 138
Likelihood ratio test, generalized likelihood ratio 262
Likelihood ratio test, one-sample -test 71—72
Likelihood ratio test, one-sample t-test 62—65
Likelihood ratio test, one-way MANOVA 122—126
Likelihood ratio test, random effects MANOVA 111
Likelihood ratio test, two-sample -test 91—92
Likelihood ratio test, two-sample t-test 85—86
Linear classification functions 231—232 236
Linear classification rule 231—232 236
Linear function(s) of random variables 14—20
Linear function(s) of random variables, confidence intervals for 74 92—94
Linear function(s) of random variables, correlation of two linear combinations 15 20
Linear function(s) of random variables, covariance matrix for several linear combinations 15—16 20
Linear function(s) of random variables, covariance matrix for two sets of linear combinations 16 20
Linear function(s) of random variables, covariance of two linear combinations 15 19
Linear function(s) of random variables, linear combinations of subvectors 16—17 20
Linear function(s) of random variables, mean of a single linear combination 14 19
Linear function(s) of random variables, variance of a single linear combination 15 19
Linear hypotheses in ANOVA and MANOVA 163—171
Linear hypotheses in multivariate regression 295—297
Linear hypotheses in univariate regression 272—273
Linear hypotheses, one sample 72—74 79—80 83—85
Linear hypotheses, one sample, for : 83—85
Linear hypotheses, two samples 94—95
Log linear models 2
Logistic classification 254—259
Logistic classification, comparison with linear classification 256—257
Logistic classification, quadratic logistic classification 258
Logistic classification, several groups 258
Logistic regression 254—255
Longley data 368
LSD test 134
Mahalanobis distance 22—23
Manova 121 (see also “Multivariate analysis of variance”)
Matrix (matrices), addition of 401
Matrix (matrices), algebra of 399—416
Matrix (matrices), bilinear form 404
Matrix (matrices), centering matrix 9—10
Matrix (matrices), characteristic equation 411
Matrix (matrices), Cholesky decomposition 42 408
Matrix (matrices), correlation matrix 11—12 (see also “Correlation matrix”)
Matrix (matrices), covariance matrix 8—9 (see also “Co variance matrix”)
Matrix (matrices), covariance matrix, positive definite 9—10
Matrix (matrices), data matrix 7
Matrix (matrices), definition 399
Matrix (matrices), determinant 409
Matrix (matrices), diagonal matrix 11 400
Matrix (matrices), diagonal of a matrix 400
Matrix (matrices), differentiation 50—51 414—416
Matrix (matrices), eigenvalues 411—414 (see also “Eigenvalues”)
| Matrix (matrices), eigenvalues and determinant 411
Matrix (matrices), eigenvalues and trace 411
Matrix (matrices), eigenvalues of inverse 411
Matrix (matrices), eigenvalues of positive definite matrix 412
Matrix (matrices), eigenvalues of product 411
Matrix (matrices), eigenvalues of symmetric matrix 412
Matrix (matrices), eigenvalues, characteristic equation 411
Matrix (matrices), eigenvectors 411—414 (see also “Eigenvectors”)
Matrix (matrices), factoring of 402
Matrix (matrices), idempotent matrix 414
Matrix (matrices), identity 400
Matrix (matrices), inverse 407
Matrix (matrices), inverse of partitioned matrix 407
Matrix (matrices), inverse of product 407
Matrix (matrices), J matrix 400
Matrix (matrices), j vector 400
Matrix (matrices), multiplication of 401
Matrix (matrices), nonsingular matrix 407
Matrix (matrices), O (zero matrix) 401
Matrix (matrices), operations with 401—406
Matrix (matrices), operations with, distributive law 401
Matrix (matrices), operations with, factoring 402
Matrix (matrices), operations with, product 401—406
Matrix (matrices), operations with, product of matrix and vector 405
Matrix (matrices), operations with, product of matrix and vector as linear combination 405
Matrix (matrices), operations with, product of vectors 401—402
Matrix (matrices), operations with, product, noncommutativity of 401
Matrix (matrices), operations with, product, with diagonal matrix 404
Matrix (matrices), operations with, sum 401—402
Matrix (matrices), operations with, sum, commutativity of 401
Matrix (matrices), orthogonal matrices 410
Matrix (matrices), partitioned matrices 404—406
Matrix, Perron — Frobenius theorem 414
Matrix, positive definite matrix 408
Matrix, positive semidefinite matrix 408
Matrix, products 401 404
Matrix, quadratic form 48—49 404
Matrix, quadratic form, generalized quadratic form 54—55
Matrix, random matrix, expected value of 10
Matrix, rank 406
Matrix, rank, full rank 406
Matrix, singular matrix 407 408
Matrix, size of a matrix 399
Matrix, spectral decomposition 412
Matrix, square root matrix 413
Matrix, trace 410
Matrix, triangular matrix 400
Matrix, vectors see “Vector(s)”
Matrix, zero matrix (O) and zero vector (0) 401
Maximum likelihood estimators 49—52
Maximum likelihood estimators in regression 286—289
Maximum likelihood estimators of covariance matrix 49—51
Maximum likelihood estimators of mean vector 49—51
Maximum likelihood estimators, invariance property of 51—52
Maximum likelihood estimators, likelihood function 49
Maximum likelihood estimators, multivariate normal 49
Mean see also “Expected value”
Mean deviation 28
Mean population 2
Mean sample 2
Mean vector, partitioned 12—13
Mean vector, population 8
Mean vector, sample 7
Misclassification rates see “Error rate(s)”
Missing data 23—27 299—300
Missing data and classification analysis 262—263
Missing data and hypothesis tests 299—300
Missing data, estimation of missing values (imputation) 24—27
Missing data, listwise deletion 23
Missing data, missing at random 23
Missing data, missing completely at random 23
Missing data, pairwise deletion 24
Models, generalized linear models 2
Models, log linear models 2
Moment generating function 43—45
Moments 42—43
Multicolinearity 40 327 364 368
Multidimensional scaling 373
Multiple correlation 275 (see also “R^2”)
Multiple regression see “Regression multiple”
Multivariate analysis 1
Multivariate analysis of covariance see “Analysis of covariance multivariate”
Multivariate analysis of variance (Manova) 121—200
Multivariate analysis of variance (MANOVA) and canonical correlation 312 333
Multivariate analysis of variance (MANOVA) and eigenvalues 131
Multivariate analysis of variance (MANOVA), additional information, test for 174—178
Multivariate analysis of variance (MANOVA), approximate tests, based on M-estimators 194
Multivariate analysis of variance (MANOVA), approximate tests, based on ranks 194
Multivariate analysis of variance (MANOVA), contrasts 145—148 150—151
Multivariate analysis of variance (MANOVA), contrasts, orthogonal 146
Multivariate analysis of variance (MANOVA), contrasts, simultaneous 146—148
Multivariate analysis of variance (MANOVA), discriminant functions 157
Multivariate analysis of variance (MANOVA), discriminant, functions 128 151 “Discriminant
Multivariate analysis of variance (MANOVA), Fisher’s LSD test 134
Multivariate analysis of variance (MANOVA), H and E matrices 122 124
Multivariate analysis of variance (MANOVA), higher order models 151
Multivariate analysis of variance (MANOVA), individual variables, tests on 134
Multivariate analysis of variance (MANOVA), Lawley — Hotelling test 130—131
Multivariate analysis of variance (MANOVA), Lawley — Hotelling test, F-approximations 130—131
Multivariate analysis of variance (MANOVA), Lawley — Hotelling test, table of critical values 441—445
Multivariate analysis of variance (MANOVA), likelihood ratio test see “Wilks’ ”
Multivariate analysis of variance (MANOVA), mixed models 151
Multivariate analysis of variance (MANOVA), one-way classification 121—134
Multivariate analysis of variance (MANOVA), one-way classification, contrasts 145—148
Multivariate analysis of variance (MANOVA), one-way classification, unbalanced data 155—160
Multivariate analysis of variance (MANOVA), one-way model 155—160
Multivariate analysis of variance (MANOVA), Pillai’s test 130—131
Multivariate analysis of variance (MANOVA), Pillai’s test, F-approximations 130
Multivariate analysis of variance (MANOVA), Pillai’s test, table of critical values 435—437
Multivariate analysis of variance (MANOVA), power of the tests 137—138 140—142
Multivariate analysis of variance (MANOVA), power of the tests, tables of power of the F-test 423—426
Multivariate analysis of variance (MANOVA), robustness of test statistics 137—138
Multivariate analysis of variance (MANOVA), Roy’s test (union-intersection) 127—129
Multivariate analysis of variance (MANOVA), Roy’s test (union-intersection), table of critical values 435—437
Multivariate analysis of variance (MANOVA), selection of variables, stepwise 177
Multivariate analysis of variance (MANOVA), step-down test 177
Multivariate analysis of variance (MANOVA), stepwise discriminant analysis 177—178
Multivariate analysis of variance (MANOVA), test on individual variables 134
Multivariate analysis of variance (MANOVA), test statistics and eigenvalues 131
Multivariate analysis of variance (MANOVA), test statistics, comparison of 132 135—138
Multivariate analysis of variance (MANOVA), test statistics, power of 137—138 140—142
Multivariate analysis of variance (MANOVA), test statistics, robustness of 137—138
Multivariate analysis of variance (MANOVA), tests on a subvector 174—178
Multivariate analysis of variance (MANOVA), tests on individual variables 157
Multivariate analysis of variance (MANOVA), tests on individual variables, experimentwise error rate 134
Multivariate analysis of variance (MANOVA), tests on individual variables, protected tests 134
Multivariate analysis of variance (MANOVA), two-way classification 148—151
Multivariate analysis of variance (MANOVA), two-way classification, contrasts 150—151
Multivariate analysis of variance (MANOVA), two-way classification, discriminant functions 151
Multivariate analysis of variance (MANOVA), two-way classification, interaction 148—149
Multivariate analysis of variance (MANOVA), two-way classification, main effects 148—149
Multivariate analysis of variance (MANOVA), two-way classification, model 148
Multivariate analysis of variance (MANOVA), two-way classification, test statistics 149
Multivariate analysis of variance (MANOVA), two-way model 168—174
Multivariate analysis of variance (MANOVA), two-way model, constrained model 169—171
Multivariate analysis of variance (MANOVA), unbalanced data 152 155—160 168—174
Multivariate analysis of variance (MANOVA), unbalanced data, Bonferroni confidence intervals 157
Multivariate analysis of variance (MANOVA), unbalanced data, contrasts 156—160
Multivariate analysis of variance (MANOVA), unbalanced data, simultaneous confidence intervals 156—157
Multivariate analysis of variance (MANOVA), union-intersection test see “Roy’s test”
Multivariate analysis of variance (MANOVA), Wilks’ A (likelihood ratio) 122—126
Multivariate analysis of variance (MANOVA), Wilks’ A (likelihood ratio), Chi-square approximation 126
Multivariate analysis of variance (MANOVA), Wilks’ A (likelihood ratio), effect of each variable 132—134
Multivariate analysis of variance (MANOVA), Wilks’ A (likelihood ratio), F-approximation 125—126
Multivariate analysis of variance (MANOVA), Wilks’ A (likelihood ratio), properties of 124—126
Multivariate analysis of variance (MANOVA), Wilks’ A (likelihood ratio), table of critical values 427—434
Multivariate analysis of variance (MANOVA), Wilks’ A (likelihood ratio), transformations to exact F 125—126
Multivariate central limit theorem 53
Multivariate data 1—2 7
Multivariate descriptive procedures 1
|
|
|
Ðåêëàìà |
|
|
|