Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Bardi J.S. — Calculus Wars: Newton, Leibniz, and the Greatest Mathematical Clash of All Time
Bardi J.S. — Calculus Wars: Newton, Leibniz, and the Greatest Mathematical Clash of All Time



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Calculus Wars: Newton, Leibniz, and the Greatest Mathematical Clash of All Time

Àâòîð: Bardi J.S.

Àííîòàöèÿ:

Now regarded as the bane of many college students’ existence, calculus was one of the most important mathematical innovations of the seventeenth century. But a dispute over its discovery sewed the seeds of discontent between two of the greatest scientific giants of all time — Sir Isaac Newton and Gottfried Wilhelm Leibniz.
Today Newton and Leibniz are generally considered the twin independent inventors of calculus, and they are both credited with giving mathematics its greatest push forward since the time of the Greeks. Had they known each other under different circumstances, they might have been friends. But in their own lifetimes, the joint glory of calculus was not enough for either and each declared war against the other, openly and in secret.
This long and bitter dispute has been swept under the carpet by historians — perhaps because it reveals Newton and Leibniz in their worst light — but The Calculus Wars tells the full story in narrative form for the first time. This vibrant and gripping scientific potboiler ultimately exposes how these twin mathematical giants were brilliant, proud, at times mad and, in the end, completely human


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2006

Êîëè÷åñòâî ñòðàíèö: 277

Äîáàâëåíà â êàòàëîã: 30.04.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Scientific publishing      79—80 87—88
Scientific societies      65—66 188 189 “Royal
Scientific societies, as envisioned by Leibniz      109—110 188—190 203—204
Scientific societies, Berlin Society of Sciences      188—191
Scientific societies, Leibniz proposes in Hanover      109
Secreta Fidelium Cruas (Sanuto)      58
Seventeenth century, changing worldviews in      11—13
Seventeenth century, living conditions in      32
Seventeenth century, resistence to new ideas in      11 48
Seventeenth century, scientific advances in      12 48 65—66
Silver mines      108—12
Sir Isaac Newton’s Philosophy Expiain’dfor the Use of Ladies (Algarotti)      137
Sloane, Hans      193 195 197
Sloman, H      82
Sluse, Rene Francois de      8 72
Smith, Barnabas      22
Sophia Dorothea (wife of George Ludwig)      164—166
Sophia, Queen      167 174 204
Sophie Charlotte, Queen of Prussia      183 188
Squaring of circle problem.      see “Quadrature of circle”
St Vincent, Gregory      63
Storer, Miss (Newton’s childhood friend)      23
Strypejohn      25
Supernatural beliefs, in seventeenth century      11
Swift, Jonathan      191
Symbob of calculus.      see “Calculus notation
Telescope, reflecting      42—43
Testelin, Henri      65
The Method of Determining the Quadratures of Figures (Craig)      122
The Skeptical Chymist (Boyle)      69
Theodicy (Leibniz)      183—184
Theology, Leibniz on      107 183—184
Theology, Newton’s study of      112—113 114
Thirty Years’War      15—17 104
Thomasius, Jacob      24
Tides, motion of      128
Torricelh, Evangelista      8 72
Tractatus de Methodis Serierum it Fluxionum (Newton)      37
Tractatus de Quadratura Curvarum      see “On the Quadrature of Curves”
Transactions of the Royal Society      see “Philosophical Transactions of the Royal Society”
Transmutation theorem (Leibniz)      86 92
Treaty of Nijmegen      97
Treaty of Westphaha      1
Tschirnhaus, Ehrenfried Walther von      89
Universal gravitation, law of.      see “Gravitation universal
Universal language (Leibniz)      52—53 109—110
University of Leipzig      24
Vienna, Leibniz in      203—204 206
Voltaire, champions Newton      232—233 236
Voltaire, on apple legend      34
Voltaire, on calculus      35
Voltaire, on Charles II      134
Voltaire, on gravitation      228
Voltaire, on great fire of London      40
Voltaire, on Holy Roman Empire      55
Voltaire, on Mercator      37
Voltaire, on Newton’s virginity      140
Vortex theory of planetary orbitak      129 131—132 226
Walks, John, Arithmetica Infinitorum      8 30 63
Walks, John, asks Newton to publish optics work      3—4
Walks, John, infinite series and      30
Walks, John, Newton’s mathematics published by      151—154
Walks, John, on Fatio attack      179
Walks, John, Royal Society and      65—66
Walter, Christian      78
Weigel, Erhard      87
Westminster Abbey, Newton’s tomb at      237—239
Westphalia, treaty of      16—17
Whiston, William      192
white light      44—45
William III, King of England (William of Orange)      135—136 138 173
William the Pious      see “William Duke
William, Duke of Luneberg      104
Windmill project (Leibniz)      110—111
Wolf, Christian      212 214—215 219
Wren, Christopher      66 119 120 124 192
“A New Method ofTeaching and Learning Law” (Leibniz)      55
“Affair of the eyebrow”      69—71 199
“Analysis by Infinitely Small Quantities”      see “Analyse de Infiniment Petits”
“Best of all possible worlds” philosophy      233—234
“Discourse on Metaphysics” (Leibniz)      123
“Dissertation on the Combinatorial Art” (Leibniz)      52—53
“Essay concerning the causes of the motions of the Heavenly Bodies” (Leibniz)      131—132
“How to Draw Tangents to Mechanical Lines” (Newton)      35—36
“Hypothesis of Light” (Newton)      89
“Invisible College”      65—66
“Mathematical Principles of Natural Philosophy”      see “Principia”
“New method for maxima and minima” (Leibniz)      116
“New Theory about Light and Colors” (Newton)      4 45
“Non fingo hypotheses” (Newton)      130
“On Analysis by Means of Equations Having an Infinite Number ofTerms” (Newton).      see “De Analysi”
“On Recondite Geometry and the Analysis of Indivisibles and Infinities” (Leibniz)      122—123
“On the Movements of Bodies” (Newton)      121
“On the Quadrature of Curves” (Newton)      5 9 10 182 196
“Systeme Nouveau de la Nature et de la Communication des Substances” (Leibniz)      154
“To Find Velocities of Bodies” (Newton)      35
“To Resolve Problems by Motion” (Newton)      36
“Two-Fold Geometrical Investigation” (Fatio)      175—176
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå