Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Bardi J.S. — Calculus Wars: Newton, Leibniz, and the Greatest Mathematical Clash of All Time
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Calculus Wars: Newton, Leibniz, and the Greatest Mathematical Clash of All Time
Àâòîð: Bardi J.S.
Àííîòàöèÿ: Now regarded as the bane of many college students’ existence, calculus was one of the most important mathematical innovations of the seventeenth century. But a dispute over its discovery sewed the seeds of discontent between two of the greatest scientific giants of all time — Sir Isaac Newton and Gottfried Wilhelm Leibniz.
Today Newton and Leibniz are generally considered the twin independent inventors of calculus, and they are both credited with giving mathematics its greatest push forward since the time of the Greeks. Had they known each other under different circumstances, they might have been friends. But in their own lifetimes, the joint glory of calculus was not enough for either and each declared war against the other, openly and in secret.
This long and bitter dispute has been swept under the carpet by historians — perhaps because it reveals Newton and Leibniz in their worst light — but The Calculus Wars tells the full story in narrative form for the first time. This vibrant and gripping scientific potboiler ultimately exposes how these twin mathematical giants were brilliant, proud, at times mad and, in the end, completely human
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2006
Êîëè÷åñòâî ñòðàíèö: 277
Äîáàâëåíà â êàòàëîã: 30.04.2008
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Scientific publishing 79—80 87—88
Scientific societies 65—66 188 189 “Royal
Scientific societies, as envisioned by Leibniz 109—110 188—190 203—204
Scientific societies, Berlin Society of Sciences 188—191
Scientific societies, Leibniz proposes in Hanover 109
Secreta Fidelium Cruas (Sanuto) 58
Seventeenth century, changing worldviews in 11—13
Seventeenth century, living conditions in 32
Seventeenth century, resistence to new ideas in 11 48
Seventeenth century, scientific advances in 12 48 65—66
Silver mines 108—12
Sir Isaac Newton’s Philosophy Expiain’dfor the Use of Ladies (Algarotti) 137
Sloane, Hans 193 195 197
Sloman, H 82
Sluse, Rene Francois de 8 72
Smith, Barnabas 22
Sophia Dorothea (wife of George Ludwig) 164—166
Sophia, Queen 167 174 204
Sophie Charlotte, Queen of Prussia 183 188
Squaring of circle problem. see “Quadrature of circle”
St Vincent, Gregory 63
Storer, Miss (Newton’s childhood friend) 23
Strypejohn 25
Supernatural beliefs, in seventeenth century 11
Swift, Jonathan 191
Symbob of calculus. see “Calculus notation
Telescope, reflecting 42—43
Testelin, Henri 65
The Method of Determining the Quadratures of Figures (Craig) 122
The Skeptical Chymist (Boyle) 69
Theodicy (Leibniz) 183—184
Theology, Leibniz on 107 183—184
Theology, Newton’s study of 112—113 114
Thirty Years’War 15—17 104
Thomasius, Jacob 24
Tides, motion of 128
Torricelh, Evangelista 8 72
Tractatus de Methodis Serierum it Fluxionum (Newton) 37
Tractatus de Quadratura Curvarum see “On the Quadrature of Curves”
Transactions of the Royal Society see “Philosophical Transactions of the Royal Society”
Transmutation theorem (Leibniz) 86 92
Treaty of Nijmegen 97
Treaty of Westphaha 1
Tschirnhaus, Ehrenfried Walther von 89
Universal gravitation, law of. see “Gravitation universal
Universal language (Leibniz) 52—53 109—110
University of Leipzig 24
Vienna, Leibniz in 203—204 206
Voltaire, champions Newton 232—233 236
Voltaire, on apple legend 34
Voltaire, on calculus 35
Voltaire, on Charles II 134
Voltaire, on gravitation 228
Voltaire, on great fire of London 40
Voltaire, on Holy Roman Empire 55
Voltaire, on Mercator 37
Voltaire, on Newton’s virginity 140
Vortex theory of planetary orbitak 129 131—132 226
Walks, John, Arithmetica Infinitorum 8 30 63
Walks, John, asks Newton to publish optics work 3—4
Walks, John, infinite series and 30
Walks, John, Newton’s mathematics published by 151—154
Walks, John, on Fatio attack 179
Walks, John, Royal Society and 65—66
Walter, Christian 78
Weigel, Erhard 87
Westminster Abbey, Newton’s tomb at 237—239
Westphalia, treaty of 16—17
Whiston, William 192
white light 44—45
William III, King of England (William of Orange) 135—136 138 173
William the Pious see “William Duke
William, Duke of Luneberg 104
Windmill project (Leibniz) 110—111
Wolf, Christian 212 214—215 219
Wren, Christopher 66 119 120 124 192
“A New Method ofTeaching and Learning Law” (Leibniz) 55
“Affair of the eyebrow” 69—71 199
“Analysis by Infinitely Small Quantities” see “Analyse de Infiniment Petits”
“Best of all possible worlds” philosophy 233—234
“Discourse on Metaphysics” (Leibniz) 123
“Dissertation on the Combinatorial Art” (Leibniz) 52—53
“Essay concerning the causes of the motions of the Heavenly Bodies” (Leibniz) 131—132
“How to Draw Tangents to Mechanical Lines” (Newton) 35—36
“Hypothesis of Light” (Newton) 89
“Invisible College” 65—66
“Mathematical Principles of Natural Philosophy” see “Principia”
“New method for maxima and minima” (Leibniz) 116
“New Theory about Light and Colors” (Newton) 4 45
“Non fingo hypotheses” (Newton) 130
“On Analysis by Means of Equations Having an Infinite Number ofTerms” (Newton). see “De Analysi”
“On Recondite Geometry and the Analysis of Indivisibles and Infinities” (Leibniz) 122—123
“On the Movements of Bodies” (Newton) 121
“On the Quadrature of Curves” (Newton) 5 9 10 182 196
“Systeme Nouveau de la Nature et de la Communication des Substances” (Leibniz) 154
“To Find Velocities of Bodies” (Newton) 35
“To Resolve Problems by Motion” (Newton) 36
“Two-Fold Geometrical Investigation” (Fatio) 175—176
Ðåêëàìà