Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hartle J.B. — Gravity: An Introduction to Einstein's General Relativity
Hartle J.B. — Gravity: An Introduction to Einstein's General Relativity



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Gravity: An Introduction to Einstein's General Relativity

Àâòîð: Hartle J.B.

Àííîòàöèÿ:

A textbook for junior or senior undergraduate physics students. It begins with the simplest physically relevant solutions of the Einstein equation to bring students quickly to the physical phenomena.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1st edition

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 656

Äîáàâëåíà â êàòàëîã: 14.04.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Naked singularity      319
National Radio Astronomy Observatory (NRAO)      225
Neutrinos      91
Neutron matter      see “Ground state matter”
Neutron stars      7 244 250 255 515 527 533 see “Pulsars”
Neutron stars, accretion disks around      282
Neutron stars, endstates of stellar evolution      515 533
Neutron stars, mass vs. radius      528 (figure)
Neutron stars, maximum mass      256 528
Neutron stars, stability      533
Neutron stars, tour through      515
Newton's Law of Gravity      see “Gravitational interaction”
Newton's laws of motion      see “Newtonian mechanics” “Special
Newton's second law in curved spacetime      261 (box)
Newton's Theorem      40
Newtonian field equation      see “Newtonian gravity”
Newtonian gravity      38—41
Newtonian gravity, compared to general relativity      452 (table) 486
Newtonian gravity, compared with electrostatics      39 (table)
Newtonian gravity, conflict with special relativity      107
Newtonian gravity, deviation equation      446
Newtonian gravity, deviation equation, compared with equation of geodesic deviation      452 (table)
Newtonian gravity, deviation equation, limit of equation of geodesic deviation      454
Newtonian gravity, field equation      40 486
Newtonian gravity, field equation, compared with Einstein equation      452 (table)
Newtonian gravity, field equation, related to tidal gravitational forces      450
Newtonian gravity, force between two masses      38
Newtonian gravity, geometric formulation      126—131
Newtonian gravity, gravitational constant G      38
Newtonian gravity, gravitational field      39
Newtonian gravity, gravitational field, created by acceleration      112
Newtonian gravity, gravitational field, eliminated by free-fall      112
Newtonian gravity, gravitational potential      38
Newtonian gravity, gravitational potential, compared to metric      452 (table)
Newtonian gravity, Kepler's law      40 253 504
Newtonian gravity, mass defined/measured by distant orbit      187
Newtonian gravity, mass density as source      39
Newtonian gravity, Newton's law of gravitv      107
Newtonian gravity, Newton's second law compared with geodesic equation      452 (table)
Newtonian gravity, Newton's theorem      40
Newtonian gravity, Newtonian and geometric, formulations compared      168 (table)
Newtonian gravity, tidal gravitational forces      445—450
Newtonian gravity, tidal gravitational forces, and tides      448 (box)
Newtonian gravity, tidal gravitational forces, compared to Riemann curvature      452 (table)
Newtonian gravity, tidal gravitational forces, defined      448
Newtonian gravity, tidal gravitational forces, outside a spherical mass      448
Newtonian mechanics, action summarizing      43
Newtonian mechanics, approximation to special relativity      77 87 88
Newtonian mechanics, flat space assumed      31
Newtonian mechanics, Newton's first law      15 31
Newtonian mechanics, Newton's second law      36
Newtonian mechanics, stability      528—533
Newtonian mechanics, stability, determined by squared frequent of modes      529
Newtonian mechanics, stability, illustrated by vibrating string      530
Newtonian mechanics, stable equilibrium      529
Newtonian mechanics, unstable equilibrium      529
Newtonian mechanics, variational principle      43
NGC (New General Catalog)      285n
NGC4258      see “Black holes in
Normal vector      see “Three-surfaces”
Nuclear binding energy      256 (figure)
Nucleosynthesis      see “Universe thermal
Null, cones      see “Light cones”
Null, four-vectors      78
Null, separation      58
Null, surfaces      see “Three-surfaces null”
Null, world lines      59 91
Null, world lines, tangent to light cone      59
Number, conservation of      472 473
Number, current      472
Number, current density      472
Number, density      471—473
Number, flux      472
Number, number-current four-vector      472
Obsener      95
Obsener, laboratory of      96
Obsener, observations referred to orthonormal basis      97
Obsener, orthonormal basis of      97—99 154
Obsener, orthonormal basis of accelerating      97
Obsener, particle energy measured by      98 154
Obsener, world line of      96
One-forms      see “Dual vectors”
Orthonormal bases      see “Bases orthonormal”
Parallel propagation, Parallel transport      see “Vectors”
Parametrized post-Newtonian (PPN) framework      221—223
Parametrized post-Newtonian (PPN) framework, PPN parameter $\beta$ measurements      230—232
Parametrized post-Newtonian (PPN) framework, PPN parameter $\gamma$ measurements      223—230 305
Parametrized post-Newtonian (PPN) framework, PPN parameters and deflection of light      223
Parametrized post-Newtonian (PPN) framework, PPN parameters and precession of the perihelion      223
Parametrized post-Newtonian (PPN) framework, PPN parameters and time delay of light      223
Paris — Lyon railway      55 (box)
Parsec      235n
Particles, energy      87
Particles, energy, measured by an observer      98 154
Particles, energy-momentum      87
Particles, rest mass      86
Particles, three-momentum      87
Particles, timelike world lines of      59
Past light cones      see “Light cones”
Pauh exclusion principle      see “Exclusion principle”
Penrose diagram, for flat space      137 (box)
Penrose diagram, for the Sehwarzschild geometry      274 (box)
Penrose process      see “Kerr geometry”
Perfect fluids      479—480
Perfect fluids, defined      479
Perfect fluids, energy density $\rho$      479
Perfect fluids, four-velocity u      479
Perfect fluids, pressure p      479
Perfect fluids, stress-energy, curved spacetime      480
Perfect fluids, stress-energy, flat spacetime      479
Perfect fluids, stress-energy, relation to pressure and energy density      479
Periastron      204 251
photons      see also “Light rays”
Photons, energy and momentum      92
Photons, four-momentum      92
Photons, wave four-vector      92
Photons, wave three-vector      92
Photons, zero rest mass      92
Planck energy      11
Planck length      11
Planck time      11
PPN      see “Parametrized post-Newtonian”
Precession of the equinoxes      231
Precession of the perihelion      231 see particle
Precession of the perihelion, and PPN parameters      223
Precession of the perihelion, confusion with solar quadrupole moment      231
Precession of the perihelion, Mercury's and periastron precession of binary pulsar PSR B1913+16      251
Precession of the perihelion, Mercury's measurement of      230—232
Pressure, example of stress      476
Pressure, Fermi      255 257
Pressure, geometrized units      479
Pressure, nonthermal      255 515
Principle of relativity      49
Principle of relativity, and connections between inertial frames      37
Principle of relativity, and equivalence of inertial frames      36
Principle of relativity, and the geometry of space      38
Principle of relativity, implemented by four-vectors      78
Principles of physics      36
Proper time      see also “World lines proper
Proper time, distance along timelike world lines      60 82 142
Proper time, parameter along timelike world lines      82
PSRB1913+16      see “Binary pulsar PSR B1913+16”
Pulsars      251 534
Pulsars, as clocks      252
Pulsars, in binary pulsar      251
Quadrupole formula for energy loss by gravitational waves      see “Gravitational waves”
Quadrupole moment, Newtonian gravitational potential of      231
Quadrupole moment, of the Sun      232
Quadrupole moment, tensor      506
Quantum cosmology      381 (box) 410
Quantum gravity      11—12 381
Radio interferometry      225 226
Raising and lowering indices      see “Indices”
Recombination      see “Universe” “Thermal
Redshift      see “Gravitational redshift” “Cosmological and
Redshift-(angular size) relation      see “FRW cosmological models”
Redshift-magnitude relation      see “FRW cosmological models”
Reference frame      see “Frames”
Relativistic beaming      93—94 101
Relativistic gravity, when important      6—10
Relativistic stars      515—537 also
Relativistic stars, Einstein equation for      521
Relativistic stars, endstates of stellar evolution      7
Relativistic stars, equations of structure      520—523 535 537
Relativistic stars, equations of structure, how to solve      523
Relativistic stars, equations of structure, Newtonian limit      521
Relativistic stars, hydrostatic equilibrium      see “Equations of structure”
Relativistic stars, maximum mass      535—537
Relativistic stars, stability      528—533
Relativistic stars, stability, changes at extrema of M vs. R      533
Relativistic stars, stability, changes at zero-frequency modes      532 532
Relativistic stars, stability, deduced from mass vs. radius relation      533
Relativistic stars, stability, of ground state matter models      533
Relativistic stars, stability, radial modes      531
Relativistic stars, stellar models, computation of      523—524
Relativistic stars, stellar models, for degenerate free fermions      524 525
Relativistic stars, stellar models, for ground state matter      528 (figure) 533
Relativistic stars, stellar models, for white dwarfs      524 525
Relativity of simultaneity      see “Simultaneity”
Rest mass, defined      86
Rest mass, density $\mu(x)$      486
Rest mass, zero      92
Ricci curvature      see “Curvature”
Ricci curvature scalar      see “Curvature”
Ricci tensor      see “Curvature”
Riemann curvature      see “Curvature”
Riemann normal coordinates      see “Coordinates”
Riemann tensor      see “Curvature” “Riemann”
Ring interferometric gyros      35 (box)
Robertson — Walker metrics      see “FRW cosmological models homogeneous isotropic
Rotating black holes      see “Kerr geometry”
Rotation, metric outside a slowly rotating body      302 303
Rotation, metric outside a slowly rotating body, derived      497—498
Rulers, devices to measure spacelike distances      60
Sagnac effect      35 {box) 164
scalar      427
Scalar product      see “Four-vectors”
Schwarzschild black holes      see “Schwarzschild geometry”
Schwarzschild coordinates      see “Schwarzschild geometry”
Schwarzschild geometry      186—215 256—276 also “Black
Schwarzschild geometry, as a black hole      256—262 273—275
Schwarzschild geometry, as a wormhole      273 (box)
Schwarzschild geometry, different coordinates compared      275
Schwarzschild geometry, Eddington — Finkelstein coordinates      256—262
Schwarzschild geometry, Eddington — Finkelstein coordinates, metric      258
Schwarzschild geometry, Eddington — Finkelstein coordinates, r = 2M not singular      258
Schwarzschild geometry, Eddington — Finkelstein coordinates, radial light rays      259 260
Schwarzschild geometry, event horizon      see “Horizon”
Schwarzschild geometry, fate of observer who falls in      455
Schwarzschild geometry, freely falling frame in      441
Schwarzschild geometry, geodesic deviation in      455
Schwarzschild geometry, geodesies      see “Particle orbits light
Schwarzschild geometry, gravitational redshift      189—191
Schwarzschild geometry, history      457n
Schwarzschild geometry, horizon, area      261
Schwarzschild geometry, horizon, as a null surface      261
Schwarzschild geometry, horizon, giometry      261—262
Schwarzschild geometry, horizon, one way property      261
Schwarzschild geometry, Killing vectors      186—187
Schwarzschild geometry, Kruskal diagram      270 271 272
Schwarzschild geometry, Kruskal extension      273 (box)
Schwarzschild geometry, Kruskal — Szekeres coordinates      269—275
Schwarzschild geometry, Kruskal — Szekeres coordinates, metric      269 270
Schwarzschild geometry, Kruskal — Szekeres coordinates, r = 2M not singular      258
Schwarzschild geometry, Kruskal — Szekeres coordinates, radial light rays      272
Schwarzschild geometry, Kruskal — Szekeres coordinates, related to Schwarzschild coordinates      271 (figure)
Schwarzschild geometry, light cones      259—261
Schwarzschild geometry, light ray orbits, deflection of light      210—212 235
Schwarzschild geometry, light ray orbits, effective potential      205
Schwarzschild geometry, light ray orbits, gallery of examples      207 (figure)
Schwarzschild geometry, light ray orbits, impact parameter b      206
Schwarzschild geometry, light ray orbits, time delay of light      212—215
Schwarzschild geometry, light ray orbits, which orbits escape      208 208
Schwarzschild geometry, mass      188
Schwarzschild geometry, mass, defined/measured by distant orbit      187
Schwarzschild geometry, metric in Schwarzschild coordinates      189
Schwarzschild geometry, Newtonian limit      187
Schwarzschild geometry, particle orbits, angular velocity of circular orbit      200
Schwarzschild geometry, particle orbits, bound      201—204
Schwarzschild geometry, particle orbits, conserved angular momentum      193
Schwarzschild geometry, particle orbits, conserved energy      193
Schwarzschild geometry, particle orbits, effective potential      194 196
Schwarzschild geometry, particle orbits, escape velocity      199
Schwarzschild geometry, particle orbits, gallery of examples      197 (figure)
Schwarzschild geometry, particle orbits, innermost stable circular (ISCO)      200
Schwarzschild geometry, particle orbits, lie in a plane      193
Schwarzschild geometry, particle orbits, Newtonian limit      194 195
Schwarzschild geometry, particle orbits, orbit defined      201
Schwarzschild geometry, particle orbits, precession      201—204 216
Schwarzschild geometry, particle orbits, radial plunge      197—200
Schwarzschild geometry, particle orbits, shape      201
Schwarzschild geometry, particle orbits, stable circular      200—201
Schwarzschild geometry, particle orbits, unstable circular      196
Schwarzschild geometry, Penrose diagram      274 (box)
Schwarzschild geometry, Riemann curvature      455
Schwarzschild geometry, Schwarzschild coordinates      186
Schwarzschild geometry, Schwarzschild coordinates, definition of radial coordinate      187
Schwarzschild geometry, Schwarzschild coordinates, metric      186
Schwarzschild geometry, Schwarzschild coordinates, r = 2M a coordinate singularity      257 270 455
Schwarzschild geometry, Schwarzschild radius r = 2M      188 235
Schwarzschild geometry, singularity at r = 0,      258 455
Schwarzschild geometry, singularity at r = 0, as a spacelike surface      262
Schwarzschild geometry, solves vacuum Einstein equation      186
Schwarzschild geometry, solving the Einstein equation to find      457
Schwarzschild geometry, symmetries of      186—187
Schwarzschild geometry, trapped surfaces      266 (box)
Schwarzschild geometry, unique spherically symmetric solution ot the vacuum Einstein equation (Birkoff's theorem)      257 310 (problem)
Schwarzschild metric      see “Schwarzschild geometry”
Schwarzschild radius      see “Schwarzschild geometry”
Schwarzschild, K.      186 457n
Second mass moment tensor      499
Separation, null, spacelike and timelike      58 142
Shapiro time delay      see “Time delay ot light”
Shapiro, Irwin      212
Simultaneity, and light cones      59
Simultaneity, and Lorentz boosts      68
Simultaneity, in GPS      69
Simultaneity, in special relativity      51—52 68
Simultaneity, Newtonian physics      50
Simultaneity, relativity of      68—69
Simultaneity, rocket thought experiment      50 (figure)
Singularity theorems      266 (box) 275 381(box)
Singularity theorems, for FRW cosmological models      399 (problem)
Slowly-rotating body      see “Rotation”
Space, spacelike surface the general notion of      160
Spacelike surface      see “Three-surfaces spacelike”
Spacelike, distances, measured by rulers      60
Spacelike, four-vector      78
Spacelike, separation      58
Spacetime      52
Spacetime diagrams      52 55
Spacetime diagrams, as maps of spacetime      56
Spacetime diagrams, events as points in      53
Spacetime diagrams, railway train example      55 (box)
Spacetime of special relativity      see “Flat spacetime”
Spacetime, dimensions, extra detectabled      157 (box)
Spacetime, dimensions, three spate and one time dimension assumed      140
Spacetime, events as points in      53
Spacetime, flat      see “Flat spacetime”
Spacetime, point in      53
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå