Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Kammler D.W. — First Course in Fourier Analysis
Kammler D.W. — First Course in Fourier Analysis



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: First Course in Fourier Analysis

Автор: Kammler D.W.

Аннотация:

This unique book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDE's, probability, diffraction, musical tones, and wavelets. Providing unified development of (univariate) Fourier analysis for functions on R, T, Z, and P, the book also includes an unusually complete presentation of the Fourier transform calculus. It uses concepts from calculus to present an elementary theory of generalized functions. It also uses the FT calculus and generalized functions to study the (univariate) wave equation, diffusion equation, and diffraction equation. In addition, fine points of the theory are developed. The book also demonstrates real-world applications of Fourier analysis in the chapter on musical tones. A valuable reference on Fourier analysis for a variety of scientific professionals, including Mathematicians, Physicists, Chemists, Geologists, Electrical Engineers, Mechanical Engineers, and others.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 2007

Количество страниц: 798

Добавлена в каталог: 13.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Step response      470 471
Stockham's autosort FFT      344 366
Strang, G.      xii A1
Structure of this book      xi
Suitably regular      3
Sum of independent random variables      765
Sum of independent random variables, and central limit thoerem      771—779
Sum of independent random variables, mean, variance for      767
Sum of independent random variables, probability density for      766
Summation rule      204 209 258 262
Support-limited function      426
Support-limited wavelets      609
Symmetry, for boundary conditions      535 545 550—552 569 585
Symmetry, for deriving the Maxwell density      791
Symmetry, for solutions of PDEs      575 584 590
Symmetry, via Fourier transforms      62 64 66—67 477
Symmetry, via operators      239 254—256 277
Synthesis, using bandlimited functions      75—76 84 489 491 497 499 503
Synthesis, using cas      249
Synthesis, using complex exponentials      3 5 7 10 430 440
Synthesis, using sin, cos      ix 67 247
Synthesis, using solutions of PDE      15 524 582
Synthesis, using wavelets      594 597 684
Tag notation      251—252 267 286 607
Tapered box      445—447 488
Tartaglia formula for roots of cubic      19 72
Taylor's formula      122 624 685 786
Temperature      15—16 540—553
Test functions      451
Thick coin      779
Timbre of tone      707
Transformation of music theme      724—725
Transformation shift rule      see “Modulation rule”
Translation invariant      17 282
Translation rule      136 140 177 199 413
Trapazoid rule, and Euler — Maclaurin formula      213
Trapazoid rule, and Fourier coefficients      234
Tree diagram for FFT      298 302
Triangle function      144
Truncated exponential      131 143 165 470
Truncated power function      382
Uncertainty relation      736 761 792
Unification of Fourier analysis, via Fourier — Poisson cube      36
Unification of Fourier analysis, via generalized functions      448—550
Unit gaussian function      132
Units for s, x, k, n      68
Universal constant $\beta$      244
Upsampling      see “Zero packing”
Validity of Fourier's representation, for generalized functions      413 440—441 450
Validity of Fourier's representation, for ordinary functions      37—58 77 81—82 85
Validity of Fourier's representation, impact on mathematics      A1—A3
Validity of wavelet representation      600 684
Variance ${\sigma}^{2}$      756 759
Variance ${\sigma}^{2}$ for sum of random variables      766—767
Vector operation for FFT      343
Velocity of traveling wave, group      589
Velocity of traveling wave, on string      528
Velocity of traveling wave, on water      591
Velocity of traveling wave, phase      566 589
Vibrating string      523
Vibrating string, bowed, plucked, struck      537 582
Vibrating string, discretized      580
Vibrating string, equation of motion      526
Vibrating string, frequency      536
Vibrating string, normal vibrational modes      536
Vibrating string, overtones      578
Vibrating string, send message      526
Vibrating string, shake to rest      577
Vibrating string, tone synthesis      539 710 731
Vibrating string, with stiffness      581
Vieta's formula      570
Water waves      554 591
Wave equation      523 527
Wave equation, conservation of energy      531
Wave equation, derivation      526
Wave equation, Fourier synthesis      524 532
Wave equation, initial conditions      527 531 587
Wave equation, kernel      528 532 575 576
Wave equation, polynomial solutions      574
Wave equation, symmetry      575
Wave equation, traveling solution      529—530 534 575—576
Wave equation, velocity      592
Wave equation, with boundary conditions      532 535
Wavelet      594
Wavelet transform      594
Wavelet, analysis equation      600 640
Wavelet, coefficients      609
Wavelet, continuity      683
Wavelet, Daubechies      610 614
Wavelet, frame-detail      598—604
Wavelet, Haar's prototype      594
Wavelet, having smoothness      616 683
Wavelet, mother-father      594 597
Wavelet, music score      597 600 674
Wavelet, samples      687
Wavelet, scaling function      597 609
Wavelet, support-limited      594 616 677
Wavelet, synthesis equation      594 684
Wavelet, via dilation equation      609
Wavelet, vs wave      593
Weak limit      428
Weak limit, for "continuity"      431
Weak limit, for central limit theorem      772
Weak limit, for derivative      430
Weak limit, for Fourier series      440—441 450
Weak limit, for initial conditions      587
Weak limit, for partial derivative      438
Weak limit, for sampling theorem      489
Weak limit, for solving dilation equation      614
Weak limit, for solving PDEs      587
Weak limit, transformations of      434
Weierstrass theorem      26 29 76 78
Weierstrass tone      731
Weyl's equidistribution theorem      195
Whittaker — Robinson flowchart for harmonic analysis      349 A23
Wiener's series for Fourier analysis      167
Window for DFT      229 705
Wirtinger's inequality      226 231
Young's double slit      560 588
Zero packing (upsampling)      187 201 232 257 261 656
Zipper identity      314
Zipper identity, as Kronecker product      344
Zipper identity, for FFT      312 327
Zipper identity, for FHT      323 359
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте