Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Kammler D.W. — First Course in Fourier Analysis
Kammler D.W. — First Course in Fourier Analysis



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: First Course in Fourier Analysis

Автор: Kammler D.W.

Аннотация:

This unique book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDE's, probability, diffraction, musical tones, and wavelets. Providing unified development of (univariate) Fourier analysis for functions on R, T, Z, and P, the book also includes an unusually complete presentation of the Fourier transform calculus. It uses concepts from calculus to present an elementary theory of generalized functions. It also uses the FT calculus and generalized functions to study the (univariate) wave equation, diffusion equation, and diffraction equation. In addition, fine points of the theory are developed. The book also demonstrates real-world applications of Fourier analysis in the chapter on musical tones. A valuable reference on Fourier analysis for a variety of scientific professionals, including Mathematicians, Physicists, Chemists, Geologists, Electrical Engineers, Mechanical Engineers, and others.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 2007

Количество страниц: 798

Добавлена в каталог: 13.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Law of Large Numbers      778
Least squares approximation, and Fourier synthesis      75—76 84
Least squares approximation, and sampling theory      492 497 522
Legendre function      237
Leibnitz notation      372
Leibnitz rule for differentiation      107 375 398 455 457 459
Liberal arts      698
Lighthill, M.J.      451—452
Likelihood function      794
Lolipop plots      6
Lorenzian      22
LTI system      16 72 282 470 522 738
Maclaurin series      1 522 738
Maclaurin series, and weak convergence      438
Maclaurin series, for bandlimited function      486 517
Mallat's herringbone algorithm      606—607 645—646 see
Mars orbit      13 70
Mason flow diagram for FFT      355
Max bound, for generalized function      784
Max bound, for probability density      745 783
Max flat trigonometric polynomial      633
Maxwell density      737 791
Mean $\mu$      756 759
Mean $\mu,$ for sum of random variables      766—767
Mersenne's formula for frequency      536
Mesa function      373 454 754 see
Michelson and Stratton harmonic analyzer      87
Midpoint regularization      45
Mirror, for boundary condition      569
Mirror, for Fourier Transform rules      134
Mirror, for reverse carry algorithm      305
Mnemonic      137 177 200
Modulation rule      137 177 199 260 413
Modulation, frequency      711
Modulation, index      711 715
Modulus of coninuity      598 643
Moments, for probability density and smoothness      757 785
Moments, for sum of random variables      766
Moments, for wavelet      618 621 680—681
Monochord      698 729
Monotonicity relation      744
Monticello      107
Mother wavelet      594
Movies, computing frames with FFT      571
Movies, for diffracting laser beam      572 590
Movies, for heat flow      572
Movies, for vibrating string      572 575 577 579—581
Movies, for water waves      591
Multiplication of generalized functions      398
Multiplication rule      144 170 177 199 413
Multiplication using FFT      113
Multiresolution analysis      597 642 684
Music, as mathematics      698
Music, beat      700
Music, for wavelets      597 600 674
Music, interval      694 697—699
Music, loudness      696 701
Music, pictogram      700
Music, pitch      694 700 702 A37
Music, samples      693 707—708 715 732
Music, scales      697—700
Music, score      693 701—703
Music, spectrogram      703 724
Music, timbre      707
Music, transformation      725 735
Musical tone      694
Musical tone, for bell      709 716
Musical tone, for brass      710
Musical tone, for string      710 731
Musical tone, from monochord      729
Musical tone, from noise      718—723
Musical tone, information content      728
Musical tone, local frequency      705—706
Musical tone, loudness      695 728
Musical tone, via additive synthesis      73 707—711
Musical tone, via computer      694 700 715 718
Musical tone, via FM synthesis      711—717 734
Newton's "method"      1
Newton's iteration      114 636
Nobel prize      22 A2
Noise, filtered      721
Noise, sound of      720 723
Noise, white      718
Normal density      139 150 739 772 775 794 795
Normal density, distribution function      740 A33
Normal vibration modes      536 702
Nyquist condition      486 705 717
Odd, function      62 64 247
Odd, generalized function      397 455
Odd, projection      245
Ohm's law of acoustics      696 729
Operation      292
Operation count, for additive, FM synthesis of tone      732
Operation count, for bit reversal permutation      354
Operation count, for FFT      299 323 327 358
Operation count, for FHT      325
Operation count, for FWT      608 646 692
Operation count, for naive DFT      292 294
Operators      16 239 A19—A22
Operators, blanket hypotheses      241—242
Operators, factorization of      257
Operators, for filter bank      656—660
Operators, for Mallat's herringbone      645
Operators, for pre-, post-processing      652
Operators, Fourier transform of      255—256 A19—A22
Operators, from complex conjugation      251—253
Operators, from powers of $\mathcal{F}$      243
Operators, Hartley transform of      263
Operators, LTI      16 72 282 470
Operators, projection      245 253—254 277
Operators, symmetry preserving      254 282
Orbit, for cardiod, rose, ...      225
Orbit, for Mars      13 70
Orbit, for Pallas      14 70
Orbit, for vibrating string      579
Orbit, symmetry of      225
Order of approximation      620 642—644
Orthogonal projection      642
Orthogonality relations, for complex exponentials      24—25
Orthogonality relations, for Hermite functions      166
Orthogonality relations, for sin, cos      75
Orthogonality relations, for sine functions      160
Orthogonality relations, for wavelets      602 625 642
Orthogonality relations, via centroid      74
Paley — Wiener theorem      517
Pallas      14 70 361
Papoulis sampling theorem      503—504 519
Parallel operation for FFT      343
Parseval identities      23—24 73—74
Parseval identities, for evaluating integrals      83 149
Parseval identities, for evaluating sums      190 221 226
Parseval identities, for generalized functions      391 466
Parseval identities, link to convolution      170
Parseval identities, validity      24 82 see
Partial derivative of generalized function      438
Partial fractions      143 416
Partition of unity      171 446 622
PDE      xiii 523 587
Periodic function      4 8 33 440
Periodic function, for ear      697
Periodization      32 535 550 569 671
Phase deaf      697 729
Pi, computation of      113—114
Piano, equitempered scale      699
Piano, for harmonic synthesis      73
Piano, keyboard frequencies      A37
Piecewise, constant      81
Piecewise, continuous      26 76—77 81 121—123 126—128
Piecewise, polynomial      117 145 170 380 382—383 463 623
Piecewise, smooth      39 42 45 55 57 83—85 123 406 491 505 623
Pitch perception      694
Plancherel identities      24
Plancherel identities, for evaluating integrals      148
Plancherel identities, for evaluating sums      190 221 224 226 491
Plancherel identities, validity      30 76 82—83
Plancherel identities, via autocorrelation      162
Poisson probability density      781—782
Poisson process      782
Poisson relations      33—36
Poisson relations, for evaluating sums      149
Poisson relations, for finding Fourier series      179 262 478 488
Poisson relations, for unifying Fourier analysis      36—37
Poisson sum formula      39 50 393 488
Polarization identity      24 74
Polygon function      191
Power functions      329 395 401 456
Power functions, truncated      382
Power scaling rule      142 413
Primitive root      238
Probability density function      122 154 739 see
Probability density function, Benford      798
Probability density function, Bernoulli      767 769 776 779
Probability density function, binomial      239
Probability density function, bivariate      764
Probability density function, Cauchy      758 760 775
Probability density function, chi squared      791
Probability density function, closure      787
Probability density function, coin flip      740 742 777
Probability density function, convolution of      765
Probability density function, die-toss      739 742 754 756 773
Probability density function, Dirac      757 775
Probability density function, for sum of random numbers      765—766 768
Probability density function, from characteristic function      741
Probability density function, from distribution function      740
Probability density function, gamma      781
Probability density function, Laplace      739 781
Probability density function, Maxwell      737 791
Probability density function, Poisson      739 781
Probability density function, standard normal      139 150 739—740 754 758 768
Probability density function, truncated exponential      742 757 771 777
Probability density function, uniform      739 742
Products, of generalized functions      398
Products, of probability functions      750
Projection operators      245 253—254 277—278 281 642
Ptolemy, C.      12 699
Pulse amplitude      511
Pythagoras and music      698 729—730
Quadratic residue      237
Quantization of samples      484
Quantum mechanics, Schroedinger equation      558
Quantum mechanics, uncertainty relation      762
Quantum mechanics, wave packet for free particle      563
Ramp function      227 381
Random number generator      194 718
Random variables      753
Random variables, characteristic function for      759 767
Random variables, generation of      194 718 795
Random variables, independent      764
Random variables, joint density      764
Random variables, max, min of      790
Random variables, sum of independent      764
Random variables, via probability density      253
Random walk      777
Rational function      143 159 416—419 465
Real world sampling theorem      507
Reciprocity relations      69
Recursion      see “Recursion”
Recursive algorthm for FFT      350—351
Reduced wave function      556
Reflection of light at mirror      569
Reflection operator      240 243
Reflection operator, tag      251
Reflection rule      135 177 199 413
Regular tails      48 53 55 82 85
Relatively prime      206 236
Repeat rule      202 232 257 261
Response of LTI system      282 419 470 471
Riemann sum      39 44
Riemann sum, and Gibbs phenomenon      44
Riemann sum, for Fourier coefficient      79
Riemann sum, for Fourier transform      79
Riemann — Lebesgue lemma      81 458
Risset's glissando      725
Rodrigues formula      151
Rules, for derivatives of generalized functions      405
Rules, for Fourier transforms of functions on ${\mathbb P}_{N}$      199—212 A17—A18
Rules, for Fourier transforms of functions on ${\mathbb R}$      132—147 A14
Rules, for Fourier transforms of functions on ${\mathbb T}_{p}, {\mathbb Z}$      176—182 187—190 A15—A16
Rules, for Fourier transforms of generalized functions      413
Rules, for manipulation of generalized functions      389
Same sign shift      137 see
Sample-sum rule      210 212 284
Samples for Daubechies wavelet      652 687 689
Sampling      32 483
Sampling function      see “Comb function”
Sampling rule      210 214 262
Sampling theorem, for almost bandlimited functions      505
Sampling theorem, for generalized functions      487
Sampling theorem, for real-world signals      507
Sampling theorem, using fragments of $\Pi$      495
Sampling theorem, using niters      498 501 503
Sampling theorem, when F is piecewise smooth      491 497
Sampling, for wavelet analysis      649 668 685
Sampling, rate for audio      484
Scale for music      697—700 729
Scale for wavelet approximation      595—596
Scaling function for wavelets      597 609
Schoenberg, I.      19 72 125
Schroedinger's equation      xiii 558
Schwartz functions      372—374 482
Schwartz functions, closure of      375
Schwartz, L.      xii 368 451
Semitone      699
Shah function      see “Comb function”
Shannon's sampling theorem      491
Shannon, C.      xiii 484 491
Shift rule      see “Translation rule”
Shuffle permutation      312 332
Shuffle permutation, action      315 332 341—342
Shuffle permutation, operator identities      314 333 342 364
Shuffle permutation, products for FFT      314 365
Signum function      228 380 424
Signum function, for Hilbert transform      267
Sin operator      63 67 246—247
Sin transform      63 67 247 287
Sinc function      130
Sinc function, properties      141 160 493 514—515
Singularity function, on $\mathbb{R}$      51—52 55 82—83
Singularity function, on ${\mathbb T}_{p}$      41—42 46
Slowly growing function      376
Slowly growing sequence      444
Smoothness of B-spline      117 193
Smoothness of convolution product      107 123 126 128 401
Smoothness of Fourier transform      48 81 153 169.
Smoothness of solution of diffusion equation      542
Smoothness of solution of dilation equation      616—619
Soil temperature      547 586
Sparce matrix factorization      311 675
Spectral, density      719—720
Spectral, enrichment      715 731
Spectral, factorization      634 682
Spectrogram, for bell tone      616 709
Spectrogram, for Risset's glissando      726
Spectrogram, for shaped noise      721 723
Spectrogram, for Twinkle, Twinkle      703
Spectrogram, generation of      702—704
Spectroscopy      21
Spectrum of arginine      22
Standard deviation $\sigma$      756
Standard normal probability distribution      A33
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте