|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Csiszar I., Körner J. — Information Theory: Coding Theorems for Discrete Memoryless Systems |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Graph, product, coverings 118 160
Graph, product, independence number and zero-error capacity 118
Gray, R.M. 158 352 383 401 416 422 424
Group code see “Linear code (for binary channels)”
Haemers, W. 118 422
Hajnal, A. 422
Hamming boundary 86 89 96
Hamming distance 54
Hamming distance and conditional entropy 54
Hamming distance and mutual information 117 179 180
Hamming neighborhood 86
Hamming neighborhood, probability bound on 92
Hamming space, isoperimetric problem in 95
Hamming sphere 95
Hamming, R.V. 54 86 96 422
Han, Te-Sun 269 294 422
Hardy, G.H. 58 422
Haroutunian, E.A. 199 203 268 422
Harper, L.H. 95 422
Hartley, R.V.L. 28 422
Hartley’s information measure 28
Helper 251
Helper in arbitrary source network 266
Helpers theorem 255
High probability sets, minimum cardinality of 16
High probability sets, minimum mass of 17 24
Hoeffding, W. 43 44 422
Horibe, Y. 57 422
Horstein, M. 201 422
Hu, Guo-Ding 60 423
Huffman code 73
Huffman code, word length and probability in 75
Huffman, D.A. 73 423
Hypothesis testing 19 22 23 25 43
Image (of a set over a channel) 101 (see also “Image size”)
Image (of a set over a channel) and generated sequences 351
Image (of a set over a channel), quasi 350
Image size (-image size) 101
Image size (-image size) and -capacity of a set 106
Image size (-image size) and information quantities 305
Image size (-image size) problem see “Image size problem”
Image size (-image size) theorem see “Image size theorem”
Image size (-image size), asymptotic independence of q 106
Image size (-image size), binary channels 347 348
Image size problem 304 ff
Image size problem, relation to entropy characterization problem 325 342 346
Image size problem, three channels 357
Image size problem, unrestricted 345
Image size theorem 329
Image size theorem, converse part 326
Image size theorem, direct part 328
Image size theorem, projections in 328
Image size theorem, projections in, degraded case 323 243
Images (of a set over a channel) quasi, mutual, are large 350
Inaccuracy 32
Indecomposable joint distribution 350
Independence number of a graph 118
Independence number of a graph and zero-error capacity 118
Independent sources, transmission of 286 292
Infinite code 80
information 1
Information content of a RV 7 17
Information for discrimination see “Informational divergence”
Information gain see “Informational divergence”
Information geometry see “Divergence geometry”
Information measures 1 6 7 22 47 “Mutual “Informational “Common
Information measures and additive set functions 51 52
Information measures, additivity 49
Information measures, axiomatic and pragmatic approaches 22
Information measures, convexity 50
Information measures, Fisher’s 27
Information measures, Hartley’s 28
Information measures, individual sequences 48
Information measures, intuitive concept 6—7
Information measures, Kullback’s see “Informational divergence”
Information measures, Renyi’s see “Entropy”
Information measures, Shannon’s 28 47
Information metric see “Entropy metric”
Information radius 147
Information source see “Source”
information storage 1 6
Information transmission theorem see “Source-channel transmission theorem”
Information, amount of 6 17 20 22
Information, common 402—405
Information, mutual see “Mutual information”
Information, provided by an event 20
Information, provided by an event, and codeword length 75
Informational divergence 20
Informational divergence and variational distance 58
Informational divergence, conditional 31
Informational divergence, convexity 50
Informational divergence, decrease of, in indirect observation see “Data processing lemma”
Informational divergence, geometry generated by see “Divergence geometry”
Input alphabet 4 100 270
Input constraint 108 129
Input constraint , average 112 182
Input constraint , capacity under 108
Input constraint , reliability function under 182 192
Input constraints , several 117
Input of a network 246
Input set 99
Input vertex 246
Instantaneous code 72
Interference channel 296
Intermediate vertex 246
Interval graph 118
Intuitive background 1 ff
Intuitive background, measuring information 6
Intuitive background, multi-terminal systems 8
Isomorphic sources 80
Isomorphy problem in ergodic theory 80
Isoperimetric problem 86 95
Jeffreys, H. 46 423
Jelinek, F. 46 78 136 160 194 423
Jerohin, V.D. 133 423
Joint type 30
Juxtaposition of codes 242
Juxtaposition of codes, MA codes 272
Karamata, J. 25 423
Karlin, S. 214 219 226 423
Karmazin, M.A. 116 423
Karush, J. 74 423
Katona, G.O.H. 75 79 83 85 95 420 423
Kemperman, J.H.B. 58 185 423
Kesten, H. 185
Kiefer, J. 222 423
Kobayashi, K. 269 422
Koerner, J. 96 119 122 160 181—185 203 233 264 265 268 269 347 349 351 352 357 358 378—383 395—405 413 416 418 420 421 423 424
Kolmogorov — Sinai theorem 80
Kolmogorov, A.N. 80 423
Komlos, J. VIII 82 420
Korn, I. 187 423
Koselev, V.N. 264 423
Kraft inequality 72
Kraft inequality, generalized 73
Kraft, L.G. 72 73 424
Krause, R.M. 74 85 424
Kricevskil, R.E. 46 84 424
Kullback — Leibler information number see “Informational divergence”
Kullback, S. 27 28 58 424
Large deviation probabilities for empirical distributions 43
Leibler, R.A. 27 28 424
Less noisy 349 408
Leung Yan Cheong, S.K. 299 419
Liao, H.J. 302 424
Limit of minimum transmission ratio (LMTR) 5 22 132
Limit of minimum transmission ratio (LMTR) and information measures 6—7
Limit of minimum transmission ratio (LMTR), AVS-AVC 225
Limit of minimum transmission ratio (LMTR), DMS-DMC see “Source-channel transmission theorem”
Limit of minimum transmission ratio (LMTR), multiple-access channel 270 284 286
| Limit of minimum transmission ratio (LMTR), source-channel network 282 283 292
Limit of minimum transmission ratio (LMTR), wire-tap channel 412
Linear code for channels 114 198
Linear code for sources 24
Linear code for sources, binary adder source network 399
Linear code, shifted 114
List code 196
List code capacity of AVC 230
List codes, error exponent for 196
List codes, zero error capacity for 196
Littlewood, J.E. 58 422
Ljubic, Ju. 82 424
Log-sum inequality 48
Longo, G. VIII 41 46 188 420 424
Lovasz, L. 118 119 263 424
Lukacs, E. IX
Lynch, T.J. 85 424
m-capacity region see “Capacity region”
m-capacity, AVC 205 (see also “a-capacity and m-capacity”)
m-capacity, AVC, and zero-error capacity of a DMC 223
m-capacity, AVC, coding theorem, binary output 208
m-capacity, AVC, positivity 222
MA capacity 284
MA code (multiple-access code) 270
MA code (multiple-access code), block 271
MA code (multiple-access code), block, with stochastic encoders 284
Mac Leod, J.B. 26 419
Marcus, R.S. 74 85 425
Margulis, G.A. 96 424
Markov chain 11 54
Markov chain, double Markovity 402
Marton, K. VIII 46 122 158 185 203 264 266 349 358 378—381 391—400 416 420 423 424
Massey, J.L. 41 424
Max-closure 344
Maximal code lemma 101
Maximal code lemma for compound channels 183
Maximal code lemma for two channels 316
Maximal code lemma, converse 104
Maximum likelihood decoder 111
Maximum likelihood decoder and minimum distance decoder 114 207
Maximum mutual information (MMI) decoder 117 164
Maximum mutual information (MMI) decoder, modified 176
Maximum probability of error 99 172
Maximum probability of error at output c, channel network 281
Maximum probability of error, capacity for see “m-capacity”
Maximum probability of error, capacity region for see “m-capacity region”
Maximum probability of error, family of channels 172
McEliece, R.J. 160 195 196 424 425
McMillan, B. 74 85 424
Mealy automaton 82
Mealy, G.H. 82
Message 2 3 99
Message of length k 3
Message set 99 270 279
Message vector 280
Message, random 3
Messages, addressing of 278
Meulen see “Van der Meulen”
Minimum distance decoder 114
Minimum distance decoder, standard 206
Minimum distance in a codeword set 180 195
Minimum entropy decoder 265
Moore automaton 82
Moore, E.F. 77 82 422
More capable 116 349
More uniform distribution 25 58
Multi-terminal coding theorems see “Source network coding theorems” “Channel
Multi-terminal systems 8 (see also “Source network” “Channel “Source-channel
Multiple source see “Discrete memoryless multiple source”
Multiple-access channel (MAC) 270
Multiple-access channel (MAC) with feedback 298
Multiple-access channel (MAC) with s senders and r receivers 292
Multiple-access channel (MAC), capacity region (a-capacity region) 271
Multiple-access channel (MAC), capacity region (a-capacity region), alternative definition 271 277
Multiple-access channel (MAC), capacity region (a-capacity region), m-, differs 284
Multiple-access channel (MAC), coding theorem 275
Multiple-access channel (MAC), coding theorem, alternative form 278
Multiple-access channel (MAC), compound 288 293
Multiple-access channel (MAC), generalized see “Channel network with one output vertex”
Multiple-access channel (MAC), LMTR for 270 283 286
Multiple-access channel (MAC), stochastic encoders 284
Multiple-access channel (MAC), two-input two-output 288
Multiple-access code see “MA code”
Muroga, S. 148 424
Mutual information 21
Mutual information and common information 405
Mutual information of individual sequences 48
Mutual information of several RV’s 57
Mutual information, conditional 48
Mutual information, convexity 52
Mutual information, maximum, decoder 117 164
Mutual quasi-images 350
n-length block code see “Block code”
Nemetz, T.O.H. 76 423 424
Network 246 (see also “Source network” “Channel “Source-channel
Network, code associated with a 246
Neuhoff, D.L. 158 424
Neyman — Pearson lemma 23
Neyman, J. 23
Ng, C.T. 27 417 424
Noiseless channel 4 6 67
Noiseless channel, capacity per unit cost 67
Noiseless channel, capacity per unit cost, definition by source-channel transmission 67
Noiseless channel, capacity per unit cost, direct definitions, alternative 67 69
Noiseless channel, capacity per unit cost, refined asymptotics 81
Noiseless channel, finite state 82
Noiseless channel, general 81 83
Noiseless coding theorem see “Average cost theorem” “Average “Noiseless
Noisy Channel Coding Theorem 104 (see also “Discrete memoryless channel”)
Non-block code see “Variable length code”
Non-finite distortion measure 134 148
Non-negativity of information measures 49
Non-terminating transmission 5
Non-terminating transmission, reliable 6 132
Normal channel network 300
Normal channel network, reduction to 300—302
Normal source network (NSN) 251
Normal source network (NSN) with three inputs and one helper 393—397
Normal source network (NSN) with two helpers 398 399
Normal source network (NSN) without helpers 251
Normal source network (NSN) without helpers, coding theorem 253—254
Normal source network (NSN) without helpers, error exponent 267—269
Normal source network (NSN) without helpers, universal coding 267
Normal source network (NSN), product space characterization of achievable rate region 255
Normal source network (NSN), reduction to 249—250
Omura, J.K. 159 184 194 195 424 425
One side information source 381
Optimal code, fixed-to-variable length see “Huffman code”
Optimal code, variable-to-fixed length 78
Optimal points 242
Optimal transmission without coding 135
Optimistic and pessimistic point of view 111
Optimistic and pessimistic point of view, channel networks 301
Optimistic and pessimistic point of view, channels 110
Optimistic and pessimistic point of view, source networks 258
Optimistic and pessimistic point of view, sources 128
Ornstein, D.S. 80 425
Output alphabet 4 100 270
Output constraint 117
Output of a network 246
Output set 99
Output vertex 246
Packing lemma 162
Parallel channels see “Product of channels”
Parity-check code see “Linear code for binary channels”
Partial ordering of channels see “Comparison of channels”
Partial ordering of distributions see “More uniform distribution”
Partial side information 367 (see also “Source coding with side information”)
Path 346
Patterson, G.W. 74 425
|
|
|
Ðåêëàìà |
|
|
|