| 
		        
			        |  |  
			        |  |  
					| Àâòîðèçàöèÿ |  
					|  |  
			        |  |  
			        | Ïîèñê ïî óêàçàòåëÿì |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Heath T.L. (ed.) — Thirteen Books of Euclid's Elements, Vol. 3 |  
                    |  |  
			        |  |  
                    | Ïðåäìåòíûé óêàçàòåëü |  
                    | | Proportion, proportion in three terms (Aristotle makes it four) the "least"      II. 131 Proportion, proportionals of vII. Def. 20 (numbers) a particular case of those of V. Def. 5 (Simson's Props. C, D and notes)      II. 126—129 III.
 Proportion, proportions enable any quadratic equation with real roots to be solved      II. 187
 Proportion, supposed use of propositions of Book V. in arithmetical Books      II. 314 320
 Proportion, three "proportions"      II. 292
 Proportion, three "proportions", but proportion par excellence or primary is continuous or geometric      II. 292—293
 Proportion, V. Def. 5 corresponds to Weierstrass' conception of number in general and to Dedekind's theory of irrationals      II. 124—126
 Proportion, X. 5 as connecting two theories      II. 113
 Proposition, formal divisions of      I. 129—131
 Protarchus      I. 5 III.
 Psellus, Michael, scholia by      I. 70 71 II.
 Pseudana of Euclid      I. 7
 Pseudana of Euclid, Pseudographemata      I. 7n.
 Pseudoboethius      I. 92
 Ptolemy I.      I. 1 2
 Ptolemy I., story of Euclid and Ptolemy      I. 1
 Ptolemy, Claudius      I. 30n. II. 117 119 III.
 Ptolemy, Claudius on Parallel-Postulate      I. 28n. 34 43 45
 Ptolemy, Claudius, attempt to prove it      I. 204—206
 Ptolemy, Claudius, Harmonica of, and commentary on      I. 17
 Ptolemy, Claudius, lemma about quadrilateral in circle (Simson's VI. Prop. D)      II. 225—227
 Pyramid, definitions of, by Euclid      III. 261
 Pyramid, definitions of, by others      III. 268
 Pyramidal numbers      II. 290
 Pyramidal numbers, pyramids truncated, twice-truncated etc.      II. 291
 Pythagoras      I. 4n. 36
 Pythagoras, construction of figure equal to one and similar to another rectilineal figure      II. 254
 Pythagoras, introduced "the most perfect proportion in four terms and specially called 'harmonic'" into Greece      II. 112
 Pythagoras, probable method of discovery of I. 47 and proof of      I. 352—355
 Pythagoras, rule for forming right-angled triangles in rational numbers      I. 351 356—359 385
 Pythagoras, story of sacrifice      I. 37 343 350
 Pythagoras, suggestions by Bretschneider and Hankel      I. 354
 Pythagoras, suggestions by Zeuthen      I. 355—356
 Pythagoras, supposed discoverer of application of areas      I. 343—344 III.
 Pythagoras, supposed discoverer of construction of five regular solids      II. 97 III.
 Pythagoras, supposed discoverer of the irrational      I. 351 III. 524—525
 Pythagoras, supposed discoverer of theorem of I. 47      I. 343—344 350—354 III.
 Pythagoreans      I. 19 36 155 188 279
 Pythagoreans, "rational" and "irrational diameter of 5"      I. 399—400 III.
 Pythagoreans, 7/5 as approximation to
  II. 119 Pythagoreans, and of other regular solids      III. 438 525
 Pythagoreans, angles of triangle equal to two right angles, theorem and proof      I. 317—320
 Pythagoreans, approximation to
  by "side-" and "diagonal-" numbers      I. 398—400 III. 20 Pythagoreans, called 10 "perfect"      II. 294
 Pythagoreans, construction of dodecahedron in sphere      II. 97
 Pythagoreans, construction of isosceles triangle of Eucl. IV. 10, and of regular pentagon      II. 97—98 III.
 Pythagoreans, definitions of even and odd      II. 281
 Pythagoreans, definitions of unit      II. 279
 Pythagoreans, distinguished three sorts of means, arithmetic, geometric and harmonic      II. 112
 Pythagoreans, gnomon Pythagorean      I. 351
 Pythagoreans, had theory of proportion applicable to commensurables only      II. 112
 Pythagoreans, method of application of areas (including exceeding and falling-short)      I. 343 384 403 II. 258—260 263—265 266—267
 Pythagoreans, possible method of discovery of latter      II. 97—99
 Pythagoreans, proof of incommensurability of
  III. 2 Pythagoreans, story of Pythagorean who, having divulged the irrational, perished by shipwreck      III. 1
 Pythagoreans, term for surface      I. 169
 Pythagoreans, three polygons which in contact fill space round point      I. 318 II.
 Q.E.D. (or F.)      I. 57
 Qadizade ar-Rumi      I. 5n. 90
 Quadratic equations, but method gives both roots if real      II. 258
 Quadratic equations, condition of possibility of solving equation of Eucl. VI. 28      II. 259
 Quadratic equations, exact correspondence of geometrical to algebraical solution      II. 263—264 266—267
 Quadratic equations, geometrical solution of particular quadratics      I. 383—385 386—388
 Quadratic equations, indication that Greeks solved them numerically      III. 43—44
 Quadratic equations, one solution only given, for obvious reasons      II. 260 264 267
 Quadratic equations, solution assumed by Hippocrates      I. 386—387
 Quadratic equations, solution of general quadratic by means of proportions      II. 187 263—265 266—267
 Quadratrix      I. 265—266 330
 Quadrature definitions of      I. 149
 Quadrilateral, condition for inscribing circle in      II. 93 95
 Quadrilateral, inscribing in circle of quadrilateral equiangular to another      II. 91—92
 Quadrilateral, quadrilateral in circle, Ptolemy's lemma (Simson's VI. Prop. D)      II. 225—227
 Quadrilateral, quadrilateral not a "polygon"      II. 239
 Quadrilateral, varieties of      I. 188—190
 Quadrinomial (straight line), compound irrational (extension from binomial)      III. 256
 Quintilian      I. 333
 Qusta b. Luqa al-Ba'labakki, translator of "Books XIV, XV"      I. 76 87 88
 Radius, no Greek word for      I. 199 II.
 Ramus, Petrus (Pierre de la Ramee)      I. 104
 Ratdolt, Erhard      I. 78 97
 Ratio, "ratio compounded of their sides" (careless expression)      II. 248
 Ratio, alternate ratio, alternando      II. 134
 Ratio, arguments about greater and less ratios unsafe unless they go back to original definitions (Simson on V. 10)      II. 156—157
 Ratio, composition of ratio, componendo, different from compounding ratios      II. 134—135
 Ratio, compound ratio      II. 132—133 189—190 234
 Ratio, conversion of ratio, convertendo      II. 135
 Ratio, def. of greater ratio only one criterion (there are others)      II. 130
 Ratio, definition of      II. 116—119
 Ratio, definition of, Barrow's defence of it      II. 117
 Ratio, definition of, no sufficient ground for regarding it as spurious      II. 117
 Ratio, division of ratios used in Data as general method alternative to compounding      II. 249—250
 Ratio, duplicate, triplicate etc. ratio as distinct from double, triple etc.      II. 133
 Ratio, ex aequali in perturbed proportion      II. 136
 Ratio, inverse ratio, inversely      II. 134
 Ratio, means of expressing ratio of incommensurables is by approximation to any degree of accuracy      II. 119
 Ratio, method of transition from arithmetical to more general sense covering incommensurables      II. 118
 Ratio, names for particular arithmetical ratios      II. 292
 Ratio, operation of compounding ratios      II. 234
 Ratio, ratio ex aequali      II. 136
 Ratio, separation of ratio, separando (commonly dividendo)      II. 135
 Ratio, test for greater ratio easier to apply than that for equal ratio      II. 129—130
 Ratio, tests for greater, equal and less ratios mutually exclusive      II. 130—131
 Rational, "rational diameter of 5"      I. 399—400
 Rational, (of ratios)      I. 137
 Rational, any straight line may lie taken as rational and the irrational is irrational in relation thereto      III. 10
 Rational, rational right-angled triangles      see "Right-angled triangles"
 Rational, rational straight line is still rational if commensurable with rational straight line in square only (extension of meaning by Euclid)      III. 10 11—12
 Rationalisation of fractions with denominator of form
  or  III. 243—252 Rauchfuss      see "Dasypodius"
 Rausenberger, O.      I. 157 175 313 III. 309
 Reciprocal or reciprocally-related figures, definition spurious      II. 189
 Rectangle = rectangular parallelogram      I. 370
 Rectangle, "rectangle contained by"      I. 370
 Rectilineal angle, "rectilineal segment"      I. 196
 Rectilineal angle, definitions classified      I. 179—181
 Rectilineal angle, rectilineal figure      I. 187
 Reductio ad absurdum      I. 134
 Reductio ad absurdum, a variety of Analysis      I. 140
 Reductio ad absurdum, by exhaustion      I. 285 293
 Reductio ad absurdum, described by Aristotle and Proclus      I. 136
 Reductio ad absurdum, nominal avoidance of      I. 369
 Reductio ad absurdum, synonyms for, in Aristotle      I. 136
 Reductio ad absurdum, the only possible method of proving Eucl. III. 1      II. 8
 Reduction, technical term, explained by Aristotle and Proclus      I. 135
 Reduction, technical term, explained by Aristotle and Proclus, first "reduction" of a difficult construction due to Hippocrates      I. 135 II.
 Regiomontanus (Johannes Mueller of Koenigsberg)      I. 93 96 100
 Reyher, Samuel      I. 107
 Rhaeticus      I. 10 III.
 Rhomboid      I. 189
 Rhombus, meaning and derivation      I. 189
 Riccardi, P.      I. 96 112 202
 Riemann, B.      I. 219 273 274 280
 Right angle, construction when drawn at extremity of second line (Heron)      I. 270
 Right angle, definition      I. 181
 Right angle, drawing straight line at right angles to another, Apollonius' construction for      I. 270
 Right-angled triangles, rational, connexion of rules with Eucl. II. 4, 8      I. 360
 Right-angled triangles, rational, discovery of rules by means of gnomons      I. 358—360
 Right-angled triangles, rational, rational right-angled triangles in Apastamba      I. 361 363
 Right-angled triangles, rational, rule for finding, by Euclid      63—64
 Right-angled triangles, rational, rule for finding, by Plato      I. 356 357 359 360 385
 Right-angled triangles, rational, rule for finding, by Pythagoras      I. 356—359
 Roeth      I. 357—358
 Rouche and de Comberousse      I. 313
 Rudd, Capt. Thos.      I. 110
 Ruellius, Joan. (Jean Ruel)      I. 100
 Russell, Bertrand      I. 227 249
 Sa'id b. Mas'ud b. al-Qass      I. 90
 Saccheri, Gerolamo      I. 106 144—145 167—168 185—186 194 197—198 200—201 II. 130
 Saccheri, Gerolamo, proof of existence of fourth proportional by Eucl. VI. 1, 2 and 12      II. 170
 Sathapatha-Brahmana      I. 362
 
 | Savile, Henry      I. 105 166 245 250 262 II. Scalene      I. 187—198
 Scalene of cone (Apollonius)      I. 188
 Scalene of numbers (=odd)      I. 188
 Scalene, a class of solid numbers      II. 290
 Schessler, Chr.      I. 107
 Scheubel, Joan.      I. 101 107
 Schiaparelli, G.V.      I. 163
 Schluessel, Christoph      see "Clavius"
 Schmidt, Max C.P.      I. 304 319
 Schmidt, W., editor of Heron, on Heron's date      I. 20—21
 Scholia to Elements and MSS. of      I. 64—74
 Scholia to Elements and MSS. of, "Schol. Vat." partly derived from Pappus' commentary      I. 66
 Scholia to Elements and MSS. of, classes of, "Schol. Vat."      I. 65—69
 Scholia to Elements and MSS. of, classes of, "Schol. Vind."      I. 69—70
 Scholia to Elements and MSS. of, classes of, miscellaneous      I. 71—74
 Scholia to Elements and MSS. of, evidence in, as to text      I. 64—65 66—67
 Scholia to Elements and MSS. of, historical information in      I. 64
 Scholia to Elements and MSS. of, many from Geminus solely      III. 522
 Scholia to Elements and MSS. of, many scholia partly extracted from Proclus on Bk. I.      I. 60 69 72
 Scholia to Elements and MSS. of, numerical illustrations in, in Greek and Arabic numerals      I. 71 III.
 Scholia to Elements and MSS. of, scholia by Joannes Pediasimus      I. 72—73
 Scholia to Elements and MSS. of, scholia by Maximus Planudes      I. 72
 Scholia to Elements and MSS. of, scholia by Psellus      I. 70—71
 Scholia to Elements and MSS. of, scholia in Latin published by G. Valla, Commandinus, Conrad Dasypodius      I. 73
 Scholia to Elements and MSS. of, scholia on Eucl. II. 13      I. 407
 Scholia to Elements and MSS. of, Scholium IV. No. 2 ascribes Book IV. to Pythagoreans      II. 97 III.
 Scholia to Elements and MSS. of, scholium published later by Heiberg attributes Scholium X. No. 62 to Proclus      III. 521—522
 Scholia to Elements and MSS. of, Scholium V. No. 1 attributes Book V. to Eudoxus      II. 112
 Scholia to Elements and MSS. of, Scholium X. No. 1 attributes discovery of irrational and incommensurable to Pythagoreans      III. 1
 Scholia to Elements and MSS. of, sometimes interpolated in text      I. 67
 Scholia to Elements and MSS. of, sources go back as far as Theodorus      III. 522
 Scholiast to Clouds of Aristophanes      II. 99
 Schopenhauer      I. 227 354
 Schotten, H.      I. 167 174 179 192—193 202
 Schultze, A. and Sevenoak, F.L.      III. 284 303 331
 Schumacher      I. 321
 Schur, F.      I. 328
 Schweikart, F.K.      I. 219
 Scipio Vegius      I. 99
 Sectio Canonis by Euclid      I. 17 II. III.
 Section = point of section      I. 170 171 383
 Section, "the section"      see "Golden section"
 Sector (of circle), explanation of name: two kinds (1) with vertex at centre, (2) with vertex at circumference      II. 5
 Sector-like (figure)      II. 5
 Sector-like (figure), bisection of such a figure by straight line      II. 5
 Seelhoff, P.      III. 527
 Segment of circle, angle of      I. 253 II.
 Segment of circle, segment less than semicircle      I. 187
 Segment of circle, similar segments      II. 5
 Semicircle      I. 186
 Semicircle, angle in semicircle a right angle, pre-Euclidean proof      II. 63
 Semicircle, angle of      I. 182 253 II. 39—41 see
 Semicircle, centre of      I. 186
 Separation of ratio and separando      II. 135
 Separation of ratio and separando, separando and componendo used relatively to one another, not to original ratio      II. 168 170
 Seqt      I. 304
 Serenus of Antinoeia      I. 203
 Serle, George      I. 110
 Servais, C.      III. 527
 Setting-out, one of formal divisions of a proposition      I. 129
 Setting-out, one of formal divisions of a proposition, may be omitted      I. 130
 Sexagesimal fractions in scholia      III. 523
 Sextus Empiricus      I. 62 63 184
 Shamsaddin as-Samarqandi      I. 5n. 89
 Sides of plane and solid numbers      II. 287—288
 Sigboto      I. 94
 Similar plane and solid numbers      I. 357 II.
 Similar plane and solid numbers, one mean between two similar plane numbers      II. 294 371—272
 Similar plane and solid numbers, two means between two similar solid numbers      II. 294 373—375
 Similar rectilineal figures, def. gives at once too little and too much      II. 188
 Similar rectilineal figures, def. of, given in Aristotle      II. 188
 Similar rectilineal figures, similar figures on straight lines which are proportional are themselves proportional and conversely (VI. 22), alternatives for proposition      II. 242—247
 Similar segments of circles      II. 5
 Similar solids, definitions of      III. 261 265—267
 Simon, Max      I. 108 155 157—158 167 202 328 II. 134
 Simplicius      I. 22 167 171 184 185 197 203 223 224 III.
 Simplicius on Eudemus' style      I. 35 38
 Simplicius on lunes of Hippocrates      I. 29 35 386—387
 Simplicius on parallels      I. 190—191
 Simplicius, commentary on Euclid      I. 27—28
 SIMPSON, THOMAS      II. 121 III.
 Simson, Robert      I. 185 186 255 259 287 293 296 322 328 384 387 403 II. 3 8 22 23 33 34 37 43 49 53 70 73 79 90 117 131 132 140 143—144 145 146 148 154 161 162 163 165 170—172 177 179 180 182 183 184 185 186 189 193 195 209 211 212 230—231 238 252 269 270 272—273 III. 266 273—274 275 276 286—287 289 295 301 309 314 321 324 327 331 334 340 341 349 351 359 362 375 433 434
 Simson, Robert on "vitiations" in Elements due to Theon      I. 46 103 104 106 111 148
 Simson, Robert on Euclid's Porisms      I. 14
 Simson, Robert, Axioms to Bk. V.      II. 137
 Simson, Robert, Bk. VI. Prop. A extending VI. 3 to case where external angle bisected      II. 197
 Simson, Robert, definition of plane      I. 172—173
 Simson, Robert, important note showing flaw in V. 10 and giving alternative      II. 156—157
 Simson, Robert, Prop. B (inversion)      II. 144
 Simson, Robert, Prop. D, Book XI.      III. 345
 Simson, Robert, Prop. E (convertendo)      II. 175
 Simson, Robert, Props. B, C, D      II. 222—227
 Simson, Robert, Props. C, D (Bk. V.) connecting proportionals of VII. Def. 20 as particular case with those of V. Def. 5      II. 126—129 III.
 Simson, Robert, remarks on VI. 27-29      II. 258—259
 Simson, Robert, shortens V. 8 by compressing two cases into one      II. 152—153
 Sind b. 'Ali Abu 't-Taiyib      I. 86
 Size, proper translation in V. Def. 3      II. 116—167 189—190
 Smith and Bryant, alternative proofs of V. 16, 17, 18 by means of VI. 1      I. 404 III. 275 284 303 307
 Smith and Bryant, alternative proofs of V. 16, 17, 18 by means of VI. 1, where magnitudes are straight lines or rectilineal areas      II. 165—166 169 173—174
 Solid angle, definitions of      III. 261 267—268
 Solid angle, solid "angle" of "quarter of sphere", of cone, or of half-cone      III. 268
 Solid numbers, three varieties according to relative lengths of sides      II. 290—291
 Solid, definition of      III. 260 262—263
 Solid, equal and similar solids      III. 261 265—267
 Solid, similar solids, definitions of      III. 261 265—267
 Speusippus      I. 125
 Sphaerica, early treatise on      I. 17
 Sphere, definitions of, by Euclid      III. 261 269
 Sphere, definitions of, by others      III. 269
 Spherical number, a particular species of cube number      II. 291
 Spiral of Archimedes      I. 26 267
 Spiral, "single-turn"      I. 122—123n. 164—165
 Spiral, "single-turn" in Pappus = cylindrical helix      I. 165
 Spire (tore) or Spiric surface      I. 163 170
 Spire (tore) or Spiric surface, varieties of      I. 163
 Spiric curves or sections, discovered by Perseus      I. 161 162—164
 Square number, product of equal numbers      II. 289 291
 Square number, product of equal numbers, one mean between square numbers      II. 294 363—264
 St Vincent, Gregory of      I. 401 404
 Steenstra, Pybo      I. 109
 Steiner, Jakob      I. 193
 Steinmann, Johann      III. 523
 Steinmetz, Moritz      I. 101 III.
 Steinschneider, M.      I. 8n. 76sqq.
 Stephanus Gracilis      I. 101—102
 Stephen Clericus      I. 47
 Stevin, Simon      III. 8
 Stifel, Michael      III. 8
 Stobaeus      I. 3 II.
 Stoic "axioms"      I. 41 221
 Stoic "axioms", illustrations      I. 329
 Stolz, O.      I. 328 III.
 Stone, E.      I. 105
 Straight line, Archimedes' assumption respecting      I. 166
 Straight line, division of straight line into any number of equal parts (an-Nairizi)      I. 326
 Straight line, Euclid's definition, interpreted by Proclus and Simplicius      I. 166—167
 Straight line, language and construction of      I. 167
 Straight line, language and construction of, and conjecture as to origin      I. 168
 Straight line, one or two cannot make a figure      I. 169 183
 Straight line, other definitions      I. 168—169
 Straight line, other definitions in Heron      I. 168
 Straight line, other definitions, by Legendre      I. 169
 Straight line, other definitions, by Leibniz      I. 169
 Straight line, pre-Euclidean (Platonic) definition      I. 165—166
 Straight line, straight line at right angles to plane, definition of      III. 260
 Straight line, straight line at right angles to plane, definition of, alternative constructions for      III. 293—294
 Straight line, two straight lines cannot enclose a space      I. 195—196
 Straight line, two straight lines cannot have a common segment      I. 196—199 III.
 Stroemer, Marten      I. 113
 
 | 
 |  |  |  | Ðåêëàìà |  |  |  |  |  |