|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Lines, bundle of 401 488
Lines, complex 391
Lines, directed straight 5
Lines, double 420n 439
Lines, field of 488
Lines, fixed 77 315—316
Lines, geodesic 559—563
Lines, half- 5 8 10 185
Lines, hyperbolic measure of 491—493
Lines, hyperbolic plane of 529
Lines, ideal 169— 170
Lines, improper 461
Lines, isotropic 414
Lines, of curvature 554
Lines, oriented 5—10 465 475
Lines, pair of 419—420 439 495
Lines, pencil of 140—141 148—150 153—155 401 430
Lines, plane of 401
Lines, Plucker equation of 365
Lines, real 392
Lines, skew 8
Lines, straight 5—10 456
Lines, support 69 573
Lines, vanishing 394
Lines, world 481—482
Little Desargues theorem 69 91—92 310
Little Pappus-Pascal theorem 69
Little scissors theorem 69
Lobachevski, N.I. 490
Locally Euclidean space 563
Locally finite complex 612
Lorentz group 481
Lorentz transformation 500
Lowering an index 551
Magnitude 11—13
Magnitude of a vector 414—415
Malfatti tangent problem 222
Manifold 462—463 517 604—609 627—628
Mapping, adjoint 374
Mapping, admissible 535
Mapping, affine 25 310—325 397—398
Mapping, continuity 517
Mapping, continuous 664—670
Mapping, cyclographic 481
Mapping, homotopic 664
Mapping, isometric 374—379 462 517
Mapping, Moebius 469
Mapping, normal 551
Mapping, normed representation for 477n
Mapping, one-to-one bicontinuous 593
Mapping, orthogonal 374—379
Mapping, projective 97—100 401 461
Mapping, rank of 324—325
Mapping, rigid 24 375 415 462
Mapping, simplicial 664—665
Mapping, topological 517 593
Marked straightedge 232—235
Mascheroni construction 224—229
Mascheroni, Lorenzo 224 228
Mean curvature 555
Measure of a line 491—493
Measure of an oriented angle 361
Measure of an oval 576—580
Measure, Lebesgue 638
Measure, projective determination of 490—506
Menelaus, theorem of 336
Menger and Uryson definition of dimension 659—660
Meridian curve 547
Metric closure theorems 150—153
Metric fundamental form 415
Metric fundamental tensor 546
Metric planes 141—148 168—173 183—185 189
Metric product 657
Metric space 350 517 654—660
Metric, Hermitian (unitary) 414
Metric-Euclidean group of motions 166—167
Metric-Euclidean plane 166
Metrizable space 663
Metrization 656
Mid-derivative 44
Midline 589—590
midpoint 35 118—120
Midpoint, n-gon 42—44
Midpoint, triple 41
Minkowski space 349
Minkowski, Hermann 550
Mirror straightedge 223—224
Model, finite 142—143
Model, of elliptic plane 195—196
Model, of Euclidean plane 190—191
Moebius definition of a polygon 239
Moebius edge rule 262
Moebius geometry 465—475 484—485 501—514
Moebius group 468—470
Moebius inversions 470—472
Moebius mapping 469
Moebius net 26
Moebius plane 467
Moebius point 465 467
Moebius strip 263 598 600—601 603—604 627
Moebius, A.F., concept of a triangle 370
Moebius, nonorientable decahedron of 263
Mohr construction 224—229
Mohr, Georg 224
Moment vector 365
Monotonicity 180
Morphology of polyhedra 260—265
Motions 115—117 118 131—133 375 416 462
Motions in elliptic geometry 505—506
Motions, elliptic group of 163
Motions, Euclidean group of 166
Motions, group of 108—109 129—130 134—135 137 139 163 166—168 375
Motions, hyperbolic group of 168
Motions, of the group plane 141
Motions, screw 378
Motions, transformation of 133—134
Moving trihedral 538—539
Multilinear form 335
Multiplicative group 527
n-dimensional manifold 517
n-gon 35—36 58
n-gon, constructible 257—259
n-gon, derivative of an 42—44
n-gon, midpoint 42—44 58—59
n-gon, regular 257—259
n-lateral 9
Neighborhood 518 657 660—663
Neighborhood, e- 638
Neighborhood, of a point 596
Neil parabola 442—443 448
Nerve of a covering 658
Net, homalodal 455 456 457
Net, Mobius 26
Net, polyhedral 261
Newton, Isaac 437
Nine-line lemma 156—158
Noether, Max 438
Non-Euclidean geometry 490 532
Non-Euclidean metrization 656
Non-Legendrian geometry 172
Nondegenerate bilinear form 326
Nondegenerate Cayley-Klein geometries 497
Nondegenerate conies 439
Nondegenerate polarity 412
Nonorientable decahedron 263
Nonorientable heptahedron 265
Nonorientable polyhedra 261—265
Nonorientable surface 604
Nonregular point 334
normal 351 538 544
| Normal form of an incidence matrix 624—625 633
Normal form, Hesse 350—351 475
Normal form, Jordan 315
Normal mapping 551
Normal representation 477n 551—552
Normal space 662
Normal subgroup 322
Normed vector space 349
North pole 466^67 501 650
Nowhere dense 639
Null circle 430
Null space 326
Null system 410
Numerical manifold 462—463
Objects, of the first kind 465—466
Objects, of the second kind 465
Obtuse cube 278
Obtuse dodecahedron 278
Octahedral group 282 286
Octahedral space 628—630
octahedron 278
One-dimensional chain 616
One-dimensional sphere 648
One-to-one bicontinuous mapping 593
Open set 639 650
Open star 665
Opposite isometry 375 416 510—512
Opposite order 5
Order 4—9 176—178 645
Order, axioms of 339
Order, cyclic 9—10
Order, of a covering 658
Order, of a curve 438 450
Order, relation 179 518
Order, structure 176—177
Ordered base 340
Ordered field 180n
Ordered hyperbolic projective-metric plane 173
Ordered plane 177
Ordinary point 441—442
Ordinary projective-metric plane 108 172
Orientable polyhedra 261—265
Orientable surface 604
Orientation 352—353
Orientation of a polygon 239—242
Orientation problem 339—342
Orientation-preserving isometries 375 462
Orientation-preserving orthogonal mapping 375
Orientation-preserving transformation 472
Oriented angle 361 418—419
Oriented circle 465
Oriented curve 536
Oriented line element 479
Oriented lines 5—10 465 475
Oriented plane 6—8 10
Oriented polyhedra 262
Oriented screw 8
Oriented simplex 610
Oriented surface 543
Oriented tetrahedron 8
Oriented triangle 6
Origin 300—301
Orthogonal basis 347
Orthogonal collineation 132—133
Orthogonal complement 348
Orthogonal group of a Euclidean space 375
Orthogonal intersection 145
Orthogonal mapping 374—379
Orthogonal reflection 378
Orthogonality 107—108 186 347—350 413—414 469
Orthogonality constant 126
Orthogonality relation 374
Orthogonalization 347—348
Orthonormal basis 348 353 415
Orthotetrahedron 358
Osculating plane 538—539
Outer product 360 363 486
Oval 573—581
Oval of Descartes 451
Oval, area of 576
Oval, center of gravity of 580—581
Oval, measurement of 576—580
Ovoid 572 580—584
Ovoid curves 580
p-adic expansion 636
Pair of lines 419—420 439 495
Pair, conjugate 403—405
Pappus affine plane 85 87 93 303—306
Pappus projective plane 97 101—102 107—109
Pappus special affine theorem 38—39
Pappus — Pascal theorem 68—69 96—97 100 158—161 213 214
parabola 331—332 383 421
Parabola, Neil 442—443 448
Parabola, vertex of 423—424
Parabolic cylinder 331 332 383 433
Parabolic distance 495
Parabolic measurement 494—495
Paraboloid 331 332 383 433
parallel 66 166 517
Parallel, -congruent 298
Parallel, -equal 36 298
Parallel, axiom 180
Parallel, body 572
Parallel, displacement 563—567
Parallel, pencils 67
Parallel, projection 322—324
Parallel, straightedge 218—220
Parallel, translation 201—202 565
Parallelepiped 23 340 353
Parallelepiped, point 49
Parallelogram 19 36—39 298 343
Parallelogram, identity 349
Parallelogram, point 32
Parallelotope 23 340—342 354
PARAMETER 534—536
Parameter, curve 543
Parameter, of a conic section 424
Parametric representation 302 425
Parametrization, rational 439—440 453
Part-n-gon 36
Partial order 645
Partition, into classes 11
Partition, into sides 176
Pascal's theorem 426
Pasch, M. 4 27 532
Path 634—635
Peano continua 642—644
Pencil 115
Pencil, axis of a 148
Pencil, carrier of a 148 167—168
Pencil, center of a 148
Pencil, improper 148
Pencil, lines in a 148—150
Pencil, of circles 429—431 473—474 484
Pencil, of conies 427—429
Pencil, of cycles 479
Pencil, of halflines 9—10
Pencil, of Lie circles 484
Pencil, of lines 140—141 148 401
Pencil, of perpendiculars 148
Pencil, of planes 387 401 479
Pencil, of spears 479
Pencil, parallel 67
Pencil, proper 148
Pentacyclic coordinates 483
Pentagon 575
Pentagon construction 253
Period of root of unity 254
Permutation 516
Perp 117
|
|
|
Ðåêëàìà |
|
|
|