| 
		        
			        |  |  
			        |  |  
					| Àâòîðèçàöèÿ |  
					|  |  
			        |  |  
			        | Ïîèñê ïî óêàçàòåëÿì |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry |  
                    |  |  
			        |  |  
                    | Ïðåäìåòíûé óêàçàòåëü |  
                    | | Geometry, degenerate Cayley — Klein      497 Geometry, differential      504 534—542 576
 Geometry, elementary      462
 Geometry, elliptic      163—164 497 502—505
 Geometry, equiform      498—499 501
 Geometry, Euclidean      164—167 345—383 413—419 462 536
 Geometry, hierarchy of      462
 Geometry, higher      465
 Geometry, hyperbolic      167—168 197 497—498 506—514
 Geometry, in the group of motions      129—130
 Geometry, Laguerre      465 475—482 484—485
 Geometry, Lie      465 482—486
 Geometry, Mobius      465—475 484—485 501—514
 Geometry, non-Euclidean      490 532
 Geometry, non-Legendrian      172
 Geometry, nondegenerate Cayley — Klein      497
 Geometry, of Abelian groups      62
 Geometry, of continuity      596
 Geometry, plane      355—357
 Geometry, plane metric      145—162
 Geometry, Plucker      486—490
 Geometry, projective      182 345 397
 Geometry, projective-metric      107—110
 Geometry, pseudo-equiform      499—501
 Geometry, real      391—393
 Geometry, Riemannian      559 564
 Geometry, similarity      462
 Glide reflection      204—205 320 378—379
 Golden section      246
 Goniometry      14
 Gram determinant      353
 Grassmann, H.G., extended algebra of      294
 Greater Desargues theorem      308—310
 Gregory's formula      245
 Group of motions      129 134—135 137 139 375
 Group of motions, elliptic      163
 Group of motions, Euclidean      166
 Group of motions, geometry in the      129—130 134—136
 Group of motions, hyperbolic      168
 Group of motions, metric-Euclidean      166—167
 Group of motions, projective-metric      108—109
 Group plane      139—141
 groups      23—28 516
 Groups, affine      310—312 397 461—462
 Groups, automorphism      24 460—461
 Groups, Betti      621
 Groups, connectivity      632
 Groups, dihedral      283
 Groups, elliptic      502
 Groups, equiaffine      338 342
 Groups, equiform      375 414 460—461
 Groups, Euclidean      374—375 461—462
 Groups, fixed      520n
 Groups, free cyclic      619
 Groups, fundamental      634
 Groups, generated      61
 Groups, hierarchy of      462
 Groups, homology      616—631 650
 Groups, icosahedral      282—283 286
 Groups, isometric      375
 Groups, Laguerre      477—479
 Groups, Lie      533
 Groups, Lorentz      481
 Groups, Mobius      468—470
 Groups, multiplicative      527
 Groups, of similarities      25
 Groups, of transformations      24 463
 Groups, orthogonal      375
 Groups, Plucker      488—489
 Groups, principal      414 462
 Groups, projective      396 461—462
 Groups, representation of      516 519
 Groups, rotation      377
 Groups, stability      520—524 528—529
 Groups, symmetric      463
 Groups, topological      377 519
 Groups, torsion      621
 Habilitation Lecture of Riemann      532
 Hadamard inequality for determinants      354
 Hadwiger, H.      574
 Half-elliptic plane      172
 Halfline      5 8—10 185 475
 Halfplane      5—6
 Halfrotation      121—124 161—162 169—170 509
 Halfspace      8 343
 Handle      601—603 608—609 628
 Harmonic conjugate      388—389
 Harmonic point      388
 Hausdorff axioms      660—663
 Hausdorff space      662
 Hausdorff, Felix      646
 Heine — Bosel theorem      651
 Helmholtz — Lie space problem      463 532
 Helmholtz, H. von      532
 Heptagon      234 236—237
 Heptahedron      265
 Hermes, identivity of      645 655
 Hermitian form      554
 Hermitian metric      414
 Hesse normal form      350—351 475
 Hesse transference principle      427
 Hessenberg counterpairing theorem      157—158
 Hexagon      44—55
 Hexagon, A-      44 47—54
 Hexagon, AC-      44 48—52
 Hexagon, affine-regular      49 575
 Hexagon, C-      44 47—52
 Hexagon, simple      96
 Hexagon, Thomsen      51 n
 Hierarchy principle      464—465
 Higher geometry      465
 Hilbert axioms      4—5 175
 Hilbert calculus of segments      90—93
 Hilbert space      656
 Hilbert, David      64 174 517—518 532
 Hjelmslev, J.      224 228
 Homaloidal net      455—457
 Homeomorphism      593—594 605 631
 Homogeneous coordinates      345 389—391
 Homogeneous space      33
 Homologous in an open subset      650
 Homology      98 619 632 652
 Homology class      619
 Homology groups      616—631 650
 Homomorphism      525
 Homotopic mapping      664
 Homotopic simplicial approximation      666
 Homotopy      635
 Homotopy class      664
 Horocycles      510 530
 Huyghens and Snell approximation to n      249
 Hyperbola      329 421
 Hyperbolic angle-sum      507
 Hyperbolic axiom      168
 Hyperbolic cylinder      329 433
 Hyperbolic distance      513
 Hyperbolic geometry      167—168 197 497—498 506—514
 Hyperbolic group of motions      168
 Hyperbolic involution      404
 Hyperbolic line element      514
 Hyperbolic measure of line      491—493
 Hyperbolic paraboloid      332 383 433
 Hyperbolic plane      168 169 173 189
 Hyperbolic plane, continuous      144—145
 Hyperbolic plane, differential geometric properties of      513—514
 Hyperbolic plane, Klein model of      191—195
 Hyperbolic plane, of lines      529
 Hyperbolic plane, of points      529—530
 Hyperbolic plane, Poincare model of      529—530 656
 Hyperbolic polarity      99
 
 | Hyperbolic reflection      508—509 Hyperbolic trigonometry      512—513
 Hyperbolically congruent      512
 Hyperboloid      329 381 432—433
 Hypercone      328 334 380
 Hyperplane      299 325 333—334
 Hypersphere      351
 Icosahedral group      282—283 286
 icosahedron      278
 Icosi-dodecahedron      278 279
 Ideal line      169—170
 Ideal plane      168—173
 Ideal points      26 141 168—170
 Ideal, prime      452
 Idempotent      324
 Identification of vertices or sides of a polyhedron      261
 Identivity of Hermes      645 655
 Image space      322—324
 Imaginary conic      421
 Imaginary quadric      432
 Improper line      461
 Improper pencil      148
 Improper plane      461
 Improper point      385 482
 Inaccessible elements      211—214
 incidence      103—104 140 176—178 517
 Incidence, matrix      622—625 633
 Incidence, relation      176
 Incidence, structure      176—177
 Incircle of a polygon      242
 Incommensurable      11
 INDEX      329 551—552
 Inertia, law of      329
 Inner automorphism      526
 Inner product      346 415
 Interior, of a polyhedron      265—266
 Interior, of a quadric      345
 Interior, of a set      647
 Intersection      145
 Intrinsic geometry of a surface      546—547
 Intrinsic opological property      594
 Invariant complex      134
 Invariant factors of a matrix      624
 Invariants      473—474 546
 inversion      207—210
 Inversion in a circle      456—457 471
 Inversion in the plane      456—457
 Inversion, Laguerre      477—479
 Inversion, Lie      483
 Inversion, Mobius      470—472
 Involution      402—405
 Involution, absolute      413—414
 Involution, diameter      421
 Involution, elliptic      404—405
 Involution, hyperbolic      404
 Involution, line      421
 Involution, on a conic section      427
 Involution, right angle      413
 Involutory collineation      394
 Involutory correlation      99
 Involutory group element      31 137—138
 Involutory transformation      456
 Irreducibility of a continuum      641
 Isobaric «-tuples of points      54—57
 Isogonal correspondence      455—456
 Isogonality theorem      151—152
 Isometric group      375
 Isometric mapping      374—379 462 517
 Isometry      375—379 415—417
 Isometry, opposite      375 510—512
 Isometry, orientation-preserving      375 462
 Isometry, sphere      502
 Isomorphism      196—197
 Isoperimetric inequality      588
 Isoperimetric problem      585—588
 Isotropic line      414
 Isotropic pencil      479
 Isotropic plane      481
 Iterated reflection      39—41
 Jacobi identity      364
 Jacobian functional determinant      543
 Jordan arc      643—644
 Jordan content      341—342
 Jordan curve      647—654
 Jordan curve, theorem      595 647—654
 Jordan normal form      315
 Jordan theorem      314—316
 Jump      646
 Jung's theorem      575
 k-dimensional volume      354—355
 Kernel      322 324
 Kernel of a homomorphism      525
 Klein bottle      600—604 621
 Klein four-group      281 283
 Klein model of hyperbolic plane      191—195
 Klein, Felix      107 460 462—465 490 532 533 593
 Knaster, Kuratowski, and Mazurkiewicz theorem      668—669
 Knottedness      594
 Kock, Í. von      644
 Kolmogorov, A.N.      532
 Kortum, H.      231
 Kowner's theorem      579—580
 Lagrange identity      338 353
 Laguerre equation      419
 Laguerre geometry      465 475—482 484—485
 Laguerre group      477—479
 Laguerre inversions      477—479
 Laguerre plane      475—477
 Least upper bound      179—180
 Lebesgue measure      638
 Lebesgue paving theorem      659
 Left side      6
 Leibniz      562
 Length of a vector      414—415
 Length, elliptic measurement of      491—493
 Levi-Civita parallel displacement      563—567
 Lie circle      466 483—484
 Lie geometry      465 482—486
 Lie group      533
 Lie line-sphere transformation      489—490
 Lie plane      482
 Lie sphere      486
 Lie, Sophus      532—533
 Lightcone      482
 LIMIT      518
 Limit circle      510
 Limit point      639
 Limit rotation      510
 Line conic      496—497
 Line coordinate      439 487
 Line element      350 479 514
 Line involution      421
 Line reflection      113—117 129 131—137 471 508 510
 Line-geometry, Plucker      486—490
 Line-sphere transformation      489—490
 linear combination      295
 Linear complex      489
 Linear dependence      295—296
 Linear differential form      558
 Linear family of curves      457
 Linear form      325 558
 Linear independence      295—296
 Linear Pfaffian form      558
 Linear set of circles      473—474
 Linear transformation      472—473 527
 Linearization      464 468 477
 Linearly transitive      78 80
 lines      298
 Lines, affine      527
 Lines, at infinity      96
 
 | 
 |  |  |  | Ðåêëàìà |  |  |  |  |  |