Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics
Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics

Àâòîð: Derbyshire J.

Àííîòàöèÿ:

Bernhard Riemann would make any list of the greatest mathematicians ever. In 1859, he proposed a formula to count prime numbers that has defied all attempts to prove it true. This new book tackles the Riemann hypothesis. Partly a biography of Riemann, Derbyshire's work presents more technical details about the hypothesis and will probably attract math recreationists. It requires, however, only a college-prep level of knowledge because of its crystalline explanations. Derbyshire treats the hypothesis historically, tracking increments of progress with sketches of well-known people, such as David Hilbert and Alan Turing, who have been stymied by it. Carrying a million-dollar bounty, the hypothesis is the most famous unsolved problem in math today, and interest in it will be both sated and stoked by these able authors.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Ïîïóëÿðíûå èçäàíèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2003

Êîëè÷åñòâî ñòðàíèö: 446

Äîáàâëåíà â êàòàëîã: 28.04.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Fractions      174—175 177—178
Fractions, improper      171
Fractions, mixed      171
Fractions, powers      66—67
Fractions, proper      171
Fractions, vulgar      171
France, anti-Semitism in      163
France, Dreyfus Affair      162—163 164 165
France, nineteenth century culture and politics      157—158 159
Franklin, James      325 326 389
Frederick the Great, King of Prussia      59—60 61 92
Frege, Gottlob      360
French Academie des Sciences      154
French Revolution      19
Freudenthal, Hans      127 131
Friedrich Wilhelm IV, King of Prussia      30
Friedrich Wilhelm, Duke of Brunswick      51
Fry, John      xi 352—353
Function theory      121 133 209—210 221 225
Functions      see also "Prime counting function" "Other
Functions of complex numbers      201—204 206—208 216—217
Functions, area under      113
Functions, argument of      36 207—208
Functions, constant      67
functions, defined      35—36 129
Functions, domain of      36—37 70 138—142 201 331—332
Functions, entire      332—333
Functions, gradient of      111
Functions, graphing      37
Functions, limit on size of      239
functions, mapping      36
Functions, value of      36 67 207—208 212 214 216
Functions, zero of      139 148 154 385
Functions, zeta      37
Galois, Evariste      369
Game theory      18 372
Gardner, Martin      367
Gathorne-Hardy, Jonathan      25
Gaudin, Michel      387
Gauss, Carl Friedrich      27 29 31 48—49 50—54 87 90 92 93 96 120—121 126 128 131 132—133 134 135 159 193 194 201 235 369 374 375 pl.
Gaussian orthogonal ensemble (GOE)      316
Gaussian Unitary Ensemble (CUE)      286—287 291 294 315 387
Gaussian-normal random number      283
Gel'fond, Alexander      354
Generalized Riemann hypothesis      xiv
Geometric number theory      87
Geometry      119
Geometry, defined      17 86
Geometry, differential      128
Geometry, Euclidean      18
Geometry, foundations of      185
Geometry, non-Euclidean      122 130—131
Geometry, topology      18
George II, King of England      26
George III, King of England and Hanover      26 60
George IV, King of England and Hanover      21 368
George V, King of Hanover      48 368
Germain, Sophie      92
Germany, Berlin mob      30
Germany, educational system      24—25 29 30 93 120
Germany, mathematics and mathematicians in      91—93 185 254—256
Germany, Nazi control of      254—256 264
Germany, structure      21 24
Germany, unification of      160 366 368
Ghosh, Amit      xiv
Gleick, James      387
Goedel, Kurt      195 391
Goettingen Seven      26—27 119 120
Goettingen University      26—27 29 30—31 51 93 94 119 120 130 133 134 166 185 230 252 254—256 257 264 363—364
Goettingen, city of      255—256 383
Goffman, Erving      52 257
Gogol, Nikolai      122
Goldbach conjecture      90 197 371 379
Goldbach, Christian      90
Golden Key, The      55 59 72 97 135 222
Golden Key, The and Moebius function      245—246
Golden Key, The, calculus version      309—311
Golden Key, The, expression      105 138 303—304
Golden Key, The, proof of      102—104 107
Golden Key, The, sieve of Eratosthenes and      100—101
Golden Key, The, turning      303—311
Gonek, Steve      xiv
Gordan's problem      184
Gordan, Paul Albert      185
Gradient      108—109 110 111 114
Gram, Jorgen Pedersen      154 198—199 257 258 263 pl.
Grand Riemann hypothesis      xiv
Gray, Jeremy J.      377
Griffiths, Phillip A.      x
Gruenbaum, Branko      378
Gsell, Catherine      59 62
Gsell, Salome      62
Gutzwiller, Martin      316 321
Guy, Richard      369
Habilitation      119—120
Hadamard's three circles theorem      159 376
Hadamard, Jacques      x 92 153 154—156 158—159 160—161 163—166 189 194 223 230 232 352 356 359 361 376 pl.
Hadamard, Lucie      163
Hadamard, Mathieu-Georges      164
Hadamard, Pierre      158—159
Hamiltonian operator      224 318
Handbook of Mathematical Functions (Abramowitz and Stegun)      373
Handbuch der Lehre von der Verteilung der Primzahlen (Landau)      231—232 238—239
Hanoverian kings      21 368
Hardy, G.H.      52—53 92 224 226 227—229 232 287 359—360 361 376 pl.
Harmonic series      9 58
Harmonic series, convergence of      11—15
Harmonic series, divergence of      9—10 12 63 64 76 88 399
Harmonic series, infinity in      15—16
Harvard University      xi 166 353
Haselgrove, Brian      259
Hasse, Helmut      270
Hebrew University of Jerusalem      164—165 230
Heilbronn, Hans      232
Hejhal, Dennis      322
Heliotrope      128
Hensel, Fanny (nee Mendelssohn)      388
Hensel, Kurt      319 388
Herglotz, Gustav      255 256
Hermite, Charles      159—160 174 194 275
Hermitian matrix      275—276 277 282 283 284—285 286 288—289 295
Hilbert — Polya conjecture      277—278 279
Hilbert, David      x 92 159 166 170 184—190 196—197 252 253—254 256 276 277 279 353 354 377 391 pl.
Hilbert, Franz      186
Hirst, Thomas      94—95
Hitler, Adolph      254
Hodges, Andrew      262 377 384
Hollond, H.A.      375
Hudson, Richard      126 236 380
Hungarians      377—378
Hutchinson, J.I.      258 263
Huxley, Martin      357
Huygens, Christiaan      58
i      176
Ignorabimus principle      253
Imaginary axis      180
imaginary numbers      169—170 175—178 180
Improper fraction      171
Incomplete number system      173
Industrial Revolution      118
Infinite field      266
Infinite product      373
Infinite series      59 63 75 138 145 149—150 304—305
infinity      15
Infinity of irrational numbers      179
Infinity of prime numbers      34 95—97 105
Infinity of rational numbers      179
Infinity, point at      214
Ingham, Albert      125
Institute for Advanced Study (Princeton)      x 125 264 287 291
Integers      171 172 173 174
Integrable problems      314
Integrals      88 110—112 127 160 305 306
Integration      42 110 111 113 149 335
Integration, contour      394
International Congress of Philosophy      225
International Congresses of Mathematicians      x 165—166 184 188 225
Introduction to the Theory of the Riemann Zeta-Function, An (Patterson)      217 385
Inverse function      41—42 43 44 221
Irrational numbers      40 69 76 170 171 172 173 174 175 179 266 367
Irrational powers      67
Iwaniec, Henryk      xiv
J(X)      299—302 305—307 328—330
Jacobi, Carl      119
Jacoby, Johanna      230
Johns Hopkins University      154
Johnson, Dr.      53
Johnson, Paul      61
Jordan's Theorem      226
Jordan, Camille      226
Kanigel, Robert      221 228—229
Kant, Immanuel      130 252
Katz, Nicholas      245 368 387
Keating, Jonathan      316 350—351 390
Kepler's laws      314
King's College, Cambridge      261 380
Klein, Felix      92 159
Koch, Elise      31 362 363—364
Koenig, Samuel      370
Kronecker, Leopold      135 170 185 188 376—377
Kulik, Yakov      153
Kummer, Eduard      135 372
Kummer, Ottilie (nee Mendelssohn)      372
Lagrange, Joseph-Louis      92
Landau, Edmund      38 224 230—232 238—239 255—256 276 278 325 394 pl.
Laplace, Pierre-Simon      92 93
Lead diagonal of a matrix      272
League for Human Rights      164
League of Nations      164
Least squares method      53 54
Lebesgue, Henri      33 88 92
Legendre, Adrien-Marie      53 54—55 92 93 232 369
Lehman's Theorem      236
Lehman, R. Sherman      236 258 259
Lehmer, Derrick      258
Lehrer, Tom      374
Leibnitz, Gottfried      22 88 112 370
Lermontov, Mikhail      122
Letters to a German Princess (Euler)      62
lh      see "Lindeloef Hypothesis"
Li(x)      113—117 328 333 335—336 373 394 396—397
Liddell, Alice      395
Limit and continuity      91
Limit as a fundamental concept in calculus      88
Limit of a sequence      16 175
Limit of a series      17
Limit, analysis as the study of      16—18 87—88 90—91
Limit, harmonic series has no      9
Limit, irrational powers defined via      67
Lindeloef Hypothesis, diagram      401
Lindeloef Hypothesis, interesting mainly in critical strip      216
Lindeloef Hypothesis, Lindeloef and      379
Lindeloef Hypothesis, RH and      393 401—402
Lindeloef Hypothesis, stated      399 401—402
Lindeloef mu function      394 400—402
Lindeloef, Ernst      223 379 384 395 pl.
Listing, Johann      374 381
Littlewood violation      235—236 326 345 348 356 380
Littlewood, Ann      229—230
Littlewood, J.E.      193 223—224 225 227 229 230 231 233 235 349 357 375 394 pl.
ln      75
Lobachevsky, Nikolai      122 130
LOG function      43—44 69 70—75 107—109 110 111 149 203—204 244 328
Log integral function      113—117 332 333 335—336 337 340 356—357
Log, "taking a"      71—72
Log, defined      69
Log, natural (base e)      69 75
Lorenz, Edward      314—315
Lower bound      380
M(k)      see "Mertens's function"
Maclaurin, Colin      263
Maier, Helmut      324
Mallory, George      90
Man Who Knew Infinity, The (Kanigel)      227
Many-body problem      281
Many-valued function      43 203
Massachusetts Institute of Technology      314—315
Mathematica software package      284—285 373 389—390
Mathematical thinking, development of      69 152 170—174 194—196
Mathematicians Apology, A (Hardy)      227 359
Matrices, arithmetic of      272 273
Matrices, characteristic polynomial of      272—273 274 276 282
Matrices, defined      195
Matrices, eigenvalues of      273 274 276 283 284 285 295
Matrices, inventor of      225 277
Matrices, lead diagonal      272
Matrices, trace of      273 274 283
Maugham, Somerset      29
Maxwell, James Clerk      226
Measure theory      88
Measuring logic vs. counting logic      82—86 90—91
Median      387
Mehta, Madan Lal      288 386
Meissel, Ernst      153—154
Meller, N.A.      258
Mendelssohn, Felix      94 95
Mendelssohn, Ottilie      372
Mendelssohn, Rebecca      94 95 133
Mendes-France, Michel      389
Mengoli, Pietro      10 370
Mertens's function      250—251 322
Mertens, Franz      154
Mittag-Leffler, Goesta      92 372
MOD      see "Modulo" "Modulus
Modified Generalized Riemann Hypothesis      xiv
Modified Grand Riemann Hypothesis      xiv
MODULO      97 395 403
Modulus of a complex number      180—182 333—334 396—399
Moebius inversion      302—303
Moebius mu function      245—251 302—303 322 343—344 345 362
Moebius strip      381—382
Moebius, August Ferdinand      249 381 382
Moments of zeta function      xiv
Monge, Gaspard      92
Montgomery — Odlyzko law      292—294 312 352 355 387
Montgomery, Hugh      193 231—232 287—288 290—291 352 356 pl.
Moon and Sixpence, The (Maugham)      28
Nachlass      257 383
Napoleon      49—50
Napoleonic Wars      19—20 24 49—50 61 92 118
National Science Foundation      353
Natural numbers      170 171 172 173 174
negative numbers      65 70 80—81 176
Neuenschwander, Erwin      24 365
Newman, James R.      128
Newson, Mary Winston      189
Newton, Sir Isaac      88 149 225 304 313
Ng, E.K.-SW.      391
Nicholas I, Emperor of Russia      122
Noether, Emmy      186 231
Non-deductive logic      325—326
Number theory      18 86—87 96 97—98 114 151 153 156 225 231 313 371—372
Numbers, bogus history of      174—175
Numbers, counting vs. measuring      83—86
Numbers, historical knowledge of      174—175 195
o      see "Big oh"
Odlyzko, Andrew      161 218 257 259—261 263—264 278 291 292 294 326 352 356 357—358 361 pl.
Oklahoma State University      353
Olbers, Heinrich      90
On the Concept of Number (Kronecker)      185
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå