Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Stein E.M. — Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilattory Integrals
Stein E.M. — Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilattory Integrals



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilattory Integrals

Àâòîð: Stein E.M.

ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Àíàëèç/Ïðîäâèíóòûé àíàëèç/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1993

Êîëè÷åñòâî ñòðàíèö: 695

Äîáàâëåíà â êàòàëîã: 02.04.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Pseudo-differential operators, adjoints      233
Pseudo-differential operators, multiplication      231 549
Pseudo-differential operators, multiplier      231 549
Pseudo-differential operators, nonlocal      267—268 (see also “Symbols
Pseudo-locality      236 323 396 402
Pseudoconvexity      593—594
Qeal-variable structures      4 8—9 37—41 619
Quantization      548—549
Quasi-conformal mappings      41
Quasi-conformal mappings and BMO      180 219
Quasi-distance      10 41 473 478 542
Rademacher functions      457 464
Rectangles      see “Averages over rectangles”
Rectangles, dual      419
Rectangles, orientation      445
Rectangles, reach      435 445 453
Restricted boundedness      293—297 301 307 310 323—326
Restriction theorems      352—355 364—368 386—388
Restriction theorems and Bochner — Riesz means      422
Restriction theorems and differential equations      368—372
Restriction theorems in $\mathbb{R}^2$      412—414 418
Restriction theorems in $\mathbb{R}^n$, n > 3      423
Restriction theorems on $H^n$      642
Restriction theorems on compact manifolds      431
Restriction theorems, curved hypersurfaces      365 386—388
Restriction theorems, finite type      352—353 418
Restriction theorems, method of $TT^{\ast}$      353 364
Restriction theorems, sharp exponents      352 365 367 387—388 414 418 430
Restriction theorems, sphere      365 430
Restriction theorems, unbounded varieties      365—368
Reverse Holder inequalities      177 201—203 212—214 218—220 224 225
Riemann singularity      277—278 339—341 357
Riesz product      40
Riesz representation theorem      143
Riesz transforms      26 317
Riesz transforms and $H^p$      121 123—124 134 138
Riesz transforms and BMO      179
Riesz transforms, analogues for $H^n$      605—608
Scaled family      496
Schrodinger equation      369 522
Schwartz kernel theorem      261
Schwarz’s inequality      499
Seminorms $||\quad||_{\alpha,\beta}$      89 94 99 294
Sharp function $f^{#}$      146—147
Sharp function $f^{#}$ and singular integrals      157—158
Sharp function $f^{#}$, $||f||_p\leq c||f^#||_p$      148—149
Sharp function $f^{#}$, dyadic $f^{#}_{\Delta}$      151 153—155
Singular integrals      3 7—8 16—36 241—249 289—316
Singular integrals and $S^m$      235 241—249
Singular integrals and $S^m_{1,1}$      269 302 324
Singular integrals and BMO      300—305 325
Singular integrals and sharp function $f^#$      157—158
Singular integrals and weights      204—211 221
Singular integrals on $H^1$      113—114 138 178 292 402—403
Singular integrals on $H^n$      557—568 580—581 586
Singular integrals on $H^p$      22 115—118
Singular integrals on $L^1$      20—22 42
Singular integrals on $L^2$      24—30 248—249 289—317 323—326 562—567 623—627
Singular integrals on $L^p$      18—23 567—568 623 627
Singular integrals on $L^{\infty}$      42 155—157 178 300—305 310
Singular integrals on BMO      157 179
Singular integrals on homogeneous groups      622—627
Singular integrals, adjoints      36 156 294
Singular integrals, bounds independence of dimension      523—525 (see also “Cancellation conditions”)
Singular integrals, characterize BMO      179 184
Singular integrals, classical      44
Singular integrals, dyadic decomposition      246—247 295—296
Singular integrals, kernels      18—19 24—30 45 245—249 289—293 296 305—308
Singular integrals, multipliers      245—249 262—263
Singular integrals, nondegenerate      210
Singular integrals, product theory      85
Singular integrals, rough kernels      372—373
Singular integrals, sharp bounds      42
Singular integrals, truncation      30—36 80 204—210 222 306—308
Singular integrals, vector-valued      28—29 46—48 74 76
Singular Radon transforms      513—517 581 641
Sp(n,R)      577—579
Square functions      26—29 158—173 180—184
Square functions and $H^p$      172
Square functions and $\mathcal{N}$      161—164 180—184
Square functions and averaging operators      487
Square functions and BMO      158—173 180—184
Square functions and Bochner — Riesz means      421
Square functions and dyadic decomposition      267 (see also “g-function”)
Square functions and maximal averages      462—463 465 470—471 474—476 478 480
Square functions and singular integrals      26—29 164
Square functions, $\mathfrak{S}(F)$      161—164
Square functions, discrete      161
Square functions, martingale      187
Square functions, nondegenerate      46—47 158—159 170 186
Square functions, nontangential $S_{\Phi}(f)$      27
Square functions, vertical $s_{\Phi}(f)$      27 326
Stationary phase      329 334 344 358
Steepest descent      374
Stopping time      162 179 317
Strong convergence      318
SU(n + l,l)      574
Subharmonicity      122—123 133
Submanifolds, definition of integral      498
Symbolic calculus      268
symbols      228 231 261
Symbols, asymptotic expansion      265—266
Symbols, compound      258—260 553
Symbols, order      232
Symplectic invariance      551 577—579
T(b) theorem      316 (see also “Cauchy integral”)
T(l) theorem      293—305 310 325
Tent spaces      see “$\mathcal{N}$
Tents T(B)      58—61 64 80 125
Trace-class space $C_r$      48
Tube domains      82 132 447—449 458—459
Twisted convolution      5 552—553 556—566 581
Unconditional bases      191
V(x,y)      see “Volume”
Vector fields      11 38—39
Vector fields, bracket      544 (see also “Commutation relations”)
Vector fields, exponential mapping      516 584
Vector fields, finite-type condition      38—39 516
Vector fields, left-invariant      544
Vector-valued inequalities      47 51 450—452
Vector-valued inequalities and weights      222
Vector-valued inequalities on $L^2$      419
Vector-valued inequalities, maximal functions      50—56 75—76 80 463
Vector-valued inequalities, singular integrals      28—29 46—48 74 76
VMO (vanishing mean oscillation)      180 224
Volume      8—9 29—30 42 542
Walsh basis      188
Wave equation      174 368—372 395 425 518—519
Wave equation in $\mathbb{R}^2$      519—523
Wavelets      173 189—191
Weak boundedness      310 325
Weak-type (1,1)      20
Weak-type (1,1) and $H^p$      113 137
Weak-type (1,1) and orthogonality      431
Weak-type maximal principle      441—444 456—458
Weighted inequalities      53—56 76 220—222 226
Weighted inequalities, equal weights      see “$A_p$
Weyl correspondence Op(a)      549—551 553—556 577—579
Wiener’s principle      93
Young’s inequality      358
Zygmund condition      225
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå