|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Stein E.M. — Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilattory Integrals |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Pseudo-differential operators, adjoints 233
Pseudo-differential operators, multiplication 231 549
Pseudo-differential operators, multiplier 231 549
Pseudo-differential operators, nonlocal 267—268 (see also “Symbols
Pseudo-locality 236 323 396 402
Pseudoconvexity 593—594
Qeal-variable structures 4 8—9 37—41 619
Quantization 548—549
Quasi-conformal mappings 41
Quasi-conformal mappings and BMO 180 219
Quasi-distance 10 41 473 478 542
Rademacher functions 457 464
Rectangles see “Averages over rectangles”
Rectangles, dual 419
Rectangles, orientation 445
Rectangles, reach 435 445 453
Restricted boundedness 293—297 301 307 310 323—326
Restriction theorems 352—355 364—368 386—388
Restriction theorems and Bochner — Riesz means 422
Restriction theorems and differential equations 368—372
Restriction theorems in 412—414 418
Restriction theorems in , n > 3 423
Restriction theorems on 642
Restriction theorems on compact manifolds 431
Restriction theorems, curved hypersurfaces 365 386—388
Restriction theorems, finite type 352—353 418
Restriction theorems, method of 353 364
Restriction theorems, sharp exponents 352 365 367 387—388 414 418 430
Restriction theorems, sphere 365 430
Restriction theorems, unbounded varieties 365—368
Reverse Holder inequalities 177 201—203 212—214 218—220 224 225
Riemann singularity 277—278 339—341 357
Riesz product 40
Riesz representation theorem 143
Riesz transforms 26 317
Riesz transforms and 121 123—124 134 138
Riesz transforms and BMO 179
Riesz transforms, analogues for 605—608
Scaled family 496
Schrodinger equation 369 522
Schwartz kernel theorem 261
Schwarz’s inequality 499
Seminorms 89 94 99 294
Sharp function 146—147
Sharp function and singular integrals 157—158
Sharp function , 148—149
Sharp function , dyadic 151 153—155
Singular integrals 3 7—8 16—36 241—249 289—316
Singular integrals and 235 241—249
Singular integrals and 269 302 324
Singular integrals and BMO 300—305 325
Singular integrals and sharp function 157—158
Singular integrals and weights 204—211 221
Singular integrals on 113—114 138 178 292 402—403
Singular integrals on 557—568 580—581 586
Singular integrals on 22 115—118
Singular integrals on 20—22 42
Singular integrals on 24—30 248—249 289—317 323—326 562—567 623—627
Singular integrals on 18—23 567—568 623 627
Singular integrals on 42 155—157 178 300—305 310
Singular integrals on BMO 157 179
Singular integrals on homogeneous groups 622—627
Singular integrals, adjoints 36 156 294
Singular integrals, bounds independence of dimension 523—525 (see also “Cancellation conditions”)
Singular integrals, characterize BMO 179 184
Singular integrals, classical 44
Singular integrals, dyadic decomposition 246—247 295—296
Singular integrals, kernels 18—19 24—30 45 245—249 289—293 296 305—308
Singular integrals, multipliers 245—249 262—263
Singular integrals, nondegenerate 210
| Singular integrals, product theory 85
Singular integrals, rough kernels 372—373
Singular integrals, sharp bounds 42
Singular integrals, truncation 30—36 80 204—210 222 306—308
Singular integrals, vector-valued 28—29 46—48 74 76
Singular Radon transforms 513—517 581 641
Sp(n,R) 577—579
Square functions 26—29 158—173 180—184
Square functions and 172
Square functions and 161—164 180—184
Square functions and averaging operators 487
Square functions and BMO 158—173 180—184
Square functions and Bochner — Riesz means 421
Square functions and dyadic decomposition 267 (see also “g-function”)
Square functions and maximal averages 462—463 465 470—471 474—476 478 480
Square functions and singular integrals 26—29 164
Square functions, 161—164
Square functions, discrete 161
Square functions, martingale 187
Square functions, nondegenerate 46—47 158—159 170 186
Square functions, nontangential 27
Square functions, vertical 27 326
Stationary phase 329 334 344 358
Steepest descent 374
Stopping time 162 179 317
Strong convergence 318
SU(n + l,l) 574
Subharmonicity 122—123 133
Submanifolds, definition of integral 498
Symbolic calculus 268
symbols 228 231 261
Symbols, asymptotic expansion 265—266
Symbols, compound 258—260 553
Symbols, order 232
Symplectic invariance 551 577—579
T(b) theorem 316 (see also “Cauchy integral”)
T(l) theorem 293—305 310 325
Tent spaces see “”
Tents T(B) 58—61 64 80 125
Trace-class space 48
Tube domains 82 132 447—449 458—459
Twisted convolution 5 552—553 556—566 581
Unconditional bases 191
V(x,y) see “Volume”
Vector fields 11 38—39
Vector fields, bracket 544 (see also “Commutation relations”)
Vector fields, exponential mapping 516 584
Vector fields, finite-type condition 38—39 516
Vector fields, left-invariant 544
Vector-valued inequalities 47 51 450—452
Vector-valued inequalities and weights 222
Vector-valued inequalities on 419
Vector-valued inequalities, maximal functions 50—56 75—76 80 463
Vector-valued inequalities, singular integrals 28—29 46—48 74 76
VMO (vanishing mean oscillation) 180 224
Volume 8—9 29—30 42 542
Walsh basis 188
Wave equation 174 368—372 395 425 518—519
Wave equation in 519—523
Wavelets 173 189—191
Weak boundedness 310 325
Weak-type (1,1) 20
Weak-type (1,1) and 113 137
Weak-type (1,1) and orthogonality 431
Weak-type maximal principle 441—444 456—458
Weighted inequalities 53—56 76 220—222 226
Weighted inequalities, equal weights see “”
Weyl correspondence Op(a) 549—551 553—556 577—579
Wiener’s principle 93
Young’s inequality 358
Zygmund condition 225
|
|
|
Ðåêëàìà |
|
|
|