|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Stein E.M. — Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilattory Integrals |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Commutators 179
Commutators, Calderon 308—312 324
Compensated compactness 137
cones 58 132 447—449 461
Cones and spheres 459
Cones, aperture 58 62 93 124—127 183—184
Conjugate functions and 120—123 133
Continuity in measure 456—458
Cotlar’s lemma 279—282 318
Cotlar’s lemma for integrals 318
Covering lemmas 4 84 465
Covering lemmas, Besicovitch 44
Covering lemmas, Borel — Cantelli 442—443
Covering lemmas, Vitali 8 12 84
Covering lemmas, Whitney decomposition 14—17 60 76 102 206
Critical points 334 341
Critical points, absence 331 341
Critical points, degeneracy 344
Critical points, degenerate 332 334 342
Critical points, nondegenerate 344 380
Curvature 5
Curvature and averages 467—469
Curvature and Fourier transforms 330
Curvature, cinematic 519—520 (see also “Finite type”)
Curvature, Gaussian 348 351 360—363 494—497
Curvature, principal 348 351 360—361 365
Curvature, rotational 494—497 500 517
Curvature, total 348
Differentiation of integrals 13 44 65 433 441 455
Differentiation of integrals over hypersurfaces 469 509
Differentiation of integrals over submanifolds 492—493
Dilations (non-isotropic) 10 37 45 186 277 473 478 486 514 530 541 618
Dini modulus 29 34 72 80 83 481
Dirichlet problem 24 223—225 590 629
Dirichlet problem for 641—642
Distance see “Quasi-distance”
Distributional inequalities 23 69 151—155 184 188 206—209
Doubling measures 8 12 39—41 151 196 218
Doubling measures and Zygmund condition 225
Duality, and BMO 142—144 163—165 178 183
Duality, and 130
Duality, and 59—61 63 77 161—163
Duality, and 181
Duality, inequalities 59 146—147 161—163
Duality, VMO and 180
Dyadic cubes 149
Dyadic decomposition 241—243 253—257 403
Dyadic decomposition and square functions 267
Dyadic decomposition for 243—245 253—257
Dyadic decomposition for 271—275
Dyadic decomposition for singular integrals 246—247 295—296
Dyadic decomposition in 501 506
Dyadic decomposition, nondyadic decompositions 282—285 319
Dyadic decomposition, second 403—406 419 522—523
Eikonal equation 425
Elliptic operators 230—231 241 266
Elliptic operators and weights 223—225
entropy 83
Euclidean balls 9
Euclidean measure 9
Exponential integrability 144—146 154—155 184
Exponential sums 373
Fatou theorem 119—120 133
Finite type 350—351
Finite type and vector fields 516
Fourier integral operators 173 375—376 394—412 424—429
Fourier integral operators and 136 429
Fourier integral operators and averages over hypersurfaces 360 496 517
Fourier integral operators and fractional integration 399—401 428—429
Fourier integral operators and pseudo-differential operators 395 402—403
Fourier integral operators in 430
Fourier integral operators in 519—523
Fourier integral operators on 402—405 410—411 428
Fourier integral operators on 397—398
Fourier integral operators on 399 402 410—412
Fourier integral operators on 429
Fourier integral operators on 411 (see also “Phase functions”)
Fourier integral operators on 429
Fourier integral operators, adjoints 400 410
Fourier integral operators, examples 394—396
Fourier integral operators, extended 424—425
Fourier integral operators, frequency decomposition 403—410
Fourier integral operators, kernels 396
Fourier integral operators, kernels in BMO 427
Fourier integral operators, sharp exponents 426 428
Fourier integral operators, singular set 396 403
Fourier transform 3 228 557
Fourier transform and oscillatory integrals 378
Fourier transform of surface-carried measure and 360
Fourier transform of surface-carried measure and singular integrals 372—373
Fourier transform of surface-carried measure, sphere 174 347—348
Fourier transform of surface-carried measure, unbounded 363—364
Fourier transform of surface-carried measures 347—351 360—364
Fourier transform of surface-carried measures and averages over hypersurfaces 468
Fourier transform of surface-carried measures and averages over submanifolds 468
Fourier transform of surface-carried measures and number theory 362—363
Fourier transform of surface-carried measures and principal curvatures 360—361 365
Fourier transform of surface-carried measures and real-variable structures 361 (see also “Restriction theorems”)
Fourier transform of surface-carried measures, curvature has zeros 360—362
Fourier transform of surface-carried measures, curved hypersurfaces 348—350 360
Fourier transform of surface-carried measures, finite type 350—351 353 475 479 492
Fourier transform of surface-carried measures, homogeneous 363—364
Fourier transform of surface-carried measures, hyperplanes 351
Fourier transform of surface-carried measures, measure in 372—373
Fourier transform of surface-carried measures, real analytic 361
Fourier transform on 569—573
Fourier transform, convergence 388—390 423
Fourier transform, measures of bounded variation 420 (see also “Multipliers”)
Fourier transform, nondyadic decompositions 282—285 319
Fourier transform, radial functions 430
Fractional integration 353—354 414
Fractional integration and 136
Fractional integration and BMO 178
Fractional integration and Fourier integral operators 399—401 428—429
Fractional integration and real-variable structures 45
Fractional integration on 265
Fractional integration, imaginary order 33 46
Freeing of monomials see “Lifting technique”
Freezing principle 230—231
Functional calculus 231
G-function 47 524
Garding inequalities 321
Gaussian kernel 24
Global -density 62 126
H-type groups 636
Haar basis 173 190
Haar basis, generalized 312—316
Hardy — Littlewood — Sobolev theorem see “Fractional integration”
Harmonic measure 41 224—225
Hausdorff — Young inequality 583
Heat equation 24 276
Heat equation on 632—633 642—643
Helson — Szego theorem 225—227
Hermite expansions 571—573 582—584
Hermite operator 549 571 579 598
Hessian determinant 377 384
Hessian determinant and rotational curvature 496
Hessian determinant, zeros 412 415
Hilbert transform 3 26 225—227 389 424
Hilbert transform and Cauchy integral 311
Hilbert — Schmidt class 554—556 570—571
Hilbert — Schmidt norm 415
Homogeneous dimension 478 620 638
Homogeneous distributions 45 262—263
Homogeneous groups 11 83 186 618—627 635—641
Homogeneous groups, balls 620
Homogeneous groups, dilations 618 621 637
Homogeneous groups, examples 620—621
Homogeneous groups, Haar measure 619
Homogeneous groups, Lie algebras 621—622 635—637
| Homogeneous groups, lifting technique 639—641
Homogeneous groups, maximal functions 638
Homogeneous groups, nilpotence 621
Homogeneous groups, norm 619 638
Homogeneous groups, singular integrals 622—627
Hyperbolic equations 372 395 425 428 429
Hypoellipticity 39 604
Infinite constant 304
Interpolation of operators and 137 185
Interpolation of operators and 255
Interpolation of operators and 264
Interpolation of operators and BMO 173—177
Interpolation of operators, averaging operators 371
Interpolation of operators, complex 384—385
Interpolation of operators, Fourier integral operators 410—412
Interpolation of operators, Fourier restriction 352 365
Interpolation of operators, Marcinkiewicz 14 22 36 265 465
Interpolation of operators, maximal averages 14 479—482 487—489 503 507 518—519
Interpolation of operators, oscillatory integrals 381—386
Interpolation of operators, singular integrals 22 36 514
Iwasawa decomposition 621 637
John — Nirenberg inequality 144—146 154—155 179
Jump theorem 580
Kakeya needle problem 434 454—455
Klein — Gordon equation 372
Kohn Laplacian 592—593 596—597
Kohn Laplacian on functions 615—618
Kohn Laplacian on pseudoconvex domains 639
Lagrangian distributions 429
Laguerre functions 584
Laplace — Beltrami operator 431
Laplacian 24 590 592 629
Lattice points, distribution 362
Layer potentials 224
Levi form 593
Lewy operator 611—618
Lewy operator, unsolvable equations 612—615
Lifting technique 468 513—517
Lifting technique and homogeneous groups 639—641
Lifting technique, freeing of monomials 477—478
Lifting technique, method of descent 483—486 490—491
Lifting technique, universal variety 477—478
Lipschitz domains 137 223—225 310—316
Littlewood — Paley decomposition see “Dyadic decomposition”
LlogL see “Orlicz spaces”
Local smoothing 521—523
Local solvability 604 611
Marcinkiewicz integral 76
Martingales 151 187—190
Martingales and real-variable structures 189
Martingales, dyadic 187
Maximal functions 3 7—14 49—75 87—101 433—434 440—449 455—511
Maximal functions and balls 65—69 78—79
Maximal functions and sets 433 441
Maximal functions and singular integrals 34—36 157—158
Maximal functions and weights 195 198—203
Maximal functions on 87—112
Maximal functions on 13—14 43 51—53 72 84 446 458
Maximal functions on 317—318
Maximal functions on 441 445
Maximal functions on BMO 179
Maximal functions on homogeneous groups 638
Maximal functions, 34 157—158 219 222 422
Maximal functions, bounds independence of dimension 523—525
Maximal functions, comparison of , , 92—101\
Maximal functions, comparison of M, 188
Maximal functions, dyadic 149—151 153—155 202—203 213
Maximal functions, grand 90 99—100 146
Maximal functions, homogeneous 72 83
Maximal functions, linearization 29 49 317—318
Maximal functions, martingale 187 223
Maximal functions, nontangential , 56—57 62 90 92 184
Maximal functions, sharp bounds 42
Maximal functions, spherical averages of 466
Maximal functions, strong Ms 83—85 446—447 458 462
Maximal functions, tangential 79 92
Maximal functions, usual M 3 9 16 354 474 478
Maximal functions, vector-valued 50—56 75—76 80 463
Maximal functions, vertical , 69—70 90
Maximal functions, weak-type principle 441—444 456—458
Mehler kernel 582 583
Metaplectic representation 578
Method of descent see “Lifting technique”
Method of rotations 72
Molecules 130
Moment conditions 87 99 104—106 128 129
Morse’s Lemma 346
Multilinear operators 326—328
Multipliers and linear subspaces 515
Multipliers ball 389 450—454
Multipliers for singular integrals 24—26 245—249 262—263
Multipliers on 642
Multipliers, half-line 452
Multipliers, half-space 450
Multipliers, Marcinkiewicz 26 174 263 464
Nikodym set 455
Nilpotent groups 517 635
Nilpotent groups, free 637 640—641
Nilpotent groups, Lie algebras 621 635
Nonmeasurable sets 70 77
One-parameter groups 584
One-parameter groups and dilations 637
Orlicz spaces 43 84 128 458 526
Ornstein — Uhlenbeck process 582 642
Orthogonality 278—288
Orthogonality and BMO 166—173
Orthogonality and singular integrals 295—300
Orthogonality on homogeneous groups 623—627
Orthogonality, almost 257 269—270 278
Orthogonality, lack of 272—273
Orthogonality, method of 278—279 317—318 353 364 378 381 398 400 431
Oscillatory integrals 3 5 329—347 375—386 414—418
Oscillatory integrals and 581
Oscillatory integrals and Fourier transform 378
Oscillatory integrals in 412—414
Oscillatory integrals on 377—383 500—501
Oscillatory integrals on 379—386 392—393 412—414
Oscillatory integrals, adjoints 378—381
Oscillatory integrals, asymptotics 334—341 355—360
Oscillatory integrals, endpoint contributions 331 355
Oscillatory integrals, finite-type phase 416
Oscillatory integrals, localization 330 341 396
Oscillatory integrals, scaling 332 342
Oscillatory integrals, sharp exponents 412 417—418
Oscillatory integrals, singular phase 415
Oscillatory singular integrals 373 416—417 423 557—561
Oscillatory singular integrals on 431
Parametrix 241 266
Paraproducts 274 302—305 326—328
Phase functions 330 377 380 427
Phase functions and Gaussian curvature 360 (see also “Hessian determinant”)
Phase functions and rotational curvature 517
Phase functions, duality 358
Phase functions, extension 381
Phase functions, Newton diagram 359
Phase functions, nondegeneracy 394
Phase functions, oscillatory index 359
Phase functions, polynomial 416
Phase functions, rank 363
Poisson integrals and BMO 165
Poisson integrals on 3 90
Poisson integrals on symmetric spaces 71 78 82 85 447—449 458—459 637 638
Poisson kernel 24 47 89 99
Poisson kernel for 629
Poisson kernel, conjugate 121
Poisson summation formula 362
Principal type 321
Product theory of 83—85 138 446—447
Pseudo-differential operators 5 228—288
Pseudo-differential operators and Fourier integral operators 395 402—403
|
|
|
Ðåêëàìà |
|
|
|