|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Stein E.M. — Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilattory Integrals |
|
|
Ïðåäìåòíûé óêàçàòåëü |
194 216—217 225—226
weights 193—227
56 197 214—216
196 201—203 212—214 218 219 225
and BMO 141 177 197 218 219 225
and maximal functions 195 198—203
and real-variable structures 223
and singular integrals 204—211 221
, 210 222
, duality 194
, extrapolation theorem 223
, factorization 216—217
, functions in 218
, interpolation 218
, overspill 202 212—214 218
, relative 219 (see also “Severse Holder inequalities”)
(Triebel — Lizorkin spaces) 264 319
88 91—92 128
and BMO 142—144 163—165 178 183
and Fourier integral operators 402—405 410—411 428
and VMO 180
, atomic decomposition 77 142 147
, atoms 91 129
, dense subspace 142
, functions in 137 178
, martingale 188 (see also “Singular integrals”)
(Heisenberg group) 5 11 517 527—588 594—618 627—635
(Heisenberg group) and rotational curvature 495
(Heisenberg group) as translations of 530
(Heisenberg group), approximation by 631 639—640
(Heisenberg group), balls 542
(Heisenberg group), dilations 541
(Heisenberg group), Fourier transform 569—573 583
(Heisenberg group), Haar measure 531
(Heisenberg group), heat equation 632—633 642—643
(Heisenberg group), Lie algebra 543—547 584
(Heisenberg group), multiplication law 530
(Heisenberg group), multipliers 642
(Heisenberg group), nonstandard dilations 620
(Heisenberg group), norm 541 638
(Heisenberg group), polar coordinates 542
(Heisenberg group), radial functions 583
(Heisenberg group), representations 551 568—569 577 598 635
(Heisenberg group), restriction theorems 642
(Heisenberg group), Riesz transforms 605—608
(Heisenberg group), singular integrals 536—543 557—568 580—581 586
(Heisenberg group), vector fields X, Y, Z, T 544—547 584 597 598
(Hardy spaces) 4 87—138
(Hardy spaces) and 87 91 92
(Hardy spaces) and ( singular) 130—131
(Hardy spaces) and Fourier transform 128
(Hardy spaces) and harmonic functions 88 118—127 133—134
(Hardy spaces) and real-variable structures 186 (see also “Singular integrals”)
(Hardy spaces) and weights 223
(Hardy spaces), atomic decomposition 105—112 137 182
(Hardy spaces), atoms 105—106 112 130
(Hardy spaces), boundary values 127
(Hardy spaces), definitions 87
(Hardy spaces), dense subspaces 109—112 128 133
(Hardy spaces), distributions in 88 129 131
(Hardy spaces), duals for p < 1 130
(Hardy spaces), maximal characterization 90—101 131
(Hardy spaces), norm 100
(Hardy spaces), product theory 138
(Hardy spaces), topology 100 127
(local ) 134 264
(local ), distributions in 135—136 429
4 13
(Sobolev spaces) 251—252 634
and 264
and 265
and 264
and tangential approach 79
, nonisotropic 606—610 634
(Lorentz spaces) 36 265 418 526
see “”
(usual symbols) 229 232—263
(usual symbols) and BMO 264
(usual symbols) and singular integrals 235 241—249
(usual symbols) on 402—403
(usual symbols) on 264
(usual symbols) on 234—237
(usual symbols) on 250
(usual symbols) on 251—252 (see also “Pseudo-differential operators”)
(usual symbols) on 253—257
(usual symbols) on S 232
(usual symbols), 261
(usual symbols), adjoints 259 554
(usual symbols), calculus 237—241 579
(usual symbols), change of variables 259
(usual symbols), commutators 261 308—312
(usual symbols), dyadic decomposition 243—245 253—257
(usual symbols), homogeneity 262
(usual symbols), kernels 235 241—245 262
(usual symbols), symmetric 579
(forbidden symbols) 270—275
(forbidden symbols) and singular integrals 269 302 324
(forbidden symbols) on 272—273
(forbidden symbols) on 319
(forbidden symbols) on 274—275
(forbidden symbols), dyadic decomposition 271—275
(forbidden symbols), kernels 271
(exotic symbols) 271
(exotic symbols) on 319
(exotic symbols) on 322—323
(exotic symbols) on S 271
(exotic symbols), calculus 320
(exotic symbols), examples 277—278
(exotic symbols), frequency decomposition 319
(exotic symbols) 276 282—288
(exotic symbols) on 282—288 323
(exotic symbols) on 319
(exotic symbols), dyadic decomposition 286—288
(exotic symbols), examples 276—277 585—586
(exotic symbols), frequency decomposition 282—285
320—321
(operator w/symbol a) 231
-complex 591—592
-Neumann problem 587 592 627—631
-Neumann problem and integral formulas 631
-Neumann problem and strong pseudoconvexity 631
-Neumann problem and weak pseudoconvexity 631
-Neumann problem, sharp estimates 631
-Neumann problem, solution on 630
-complex 592—595
(Lipschitz spaces) 130 253—257 274
(Lipschitz spaces), 264 319
(Lipschitz spaces), nonisotropic (Lipschitz spaces) 634
(holomorphic ) 131—132 137 226
(holomorphic ), \mathcal{U}^n 532—541
(holomorphic ), boundary values 532—535
(tent spaces) 58—65 77—78
(tent spaces) and Carleson measures 59—61 63 77 161—163
(tent spaces), 161—164
(tent spaces), 180—184
(tent spaces), atomic decomposition 63—65 77 181—182
(tent spaces), atoms 63 181
(Schwartz class) 88
(tempered distributions) 89
90
(upper half-space) 528—543 587
(upper half-space), (boundary) 529 545—547 641—642
(upper half-space), -Neumann problem 627—631
(upper half-space), 532—541
(upper half-space), automorphism group 574—576
(upper half-space), coordinates 531 628
(upper half-space), defining function r(z) 530
(upper half-space), dilations 530 538
(upper half-space), equivalence with ball 529
(upper half-space), measure 532
| (upper half-space), rotations 530
(upper half-space), translation group 530
(sub-Laplacian) 39 46 636 642
588 596—610 628—630 632—635
, forbidden values 598
, fundamental solution 598—602 632
, hypoellipticity 604 635
, invertibility 598 635
, local solvability 602—604
, relative solution 615—618 634
, sharp regularity 609—610
, solution operator 602
, symmetry 596 599 633—634
-convexity 48
a(x, D) (operator w/symbol a) 231
Approximations of the identity 23—24 56 198 242
Approximations of the identity and singular integrals 81
Approximations of the identity, relations between 93—94 138
Approximations of the identity, singular 71—75 80—83 130—131 481
Approximations of the identityon homogeneous groups 638
Area integral 47 182—184
Area integral and 124—127
Atomic decomposition in 77 142 147
Atomic decomposition in 105—112 137 182
Atomic decomposition in 129
Atomic decomposition in (p > 1) 112 185
Atomic decomposition in 181—182
Atomic decomposition in N 63—65 77
Atomic decomposition, localized 137
Atoms in 91 129
Atoms in 105—106 112 130
Atoms in 181
Atoms in N 63
Averages over hypersurfaces 467—472 493—511 517—525
Averages over hypersurfaces and 370—372 517
Averages over hypersurfaces and averages over submanifolds 467—469
Averages over hypersurfaces and Fourier integral operators 360 496 517
Averages over hypersurfaces in 519—523
Averages over hypersurfaces on 503
Averages over hypersurfaces, estimates 469—471 501—502 504—507
Averages over hypersurfaces, estimates 370—372 471—472 499 503 507
Averages over hypersurfaces, curvature has zeros 512 518
Averages over hypersurfaces, definability on 508—509
Averages over hypersurfaces, dilated 510—511
Averages over hypersurfaces, dimension restrictions 471—472 502 509—510
Averages over hypersurfaces, finite type 518
Averages over hypersurfaces, sharp exponents 471—472
Averages over hypersurfaces, smoothing 173—174 370—372 517
Averages over hypersurfaces, spheres 131 173—174 395 399 469—472 518—519 523
Averages over hypersurfaces, variable 493—499
Averages over measures on universal variety 486—489
Averages over measures, estimates 487—488 511
Averages over measures, estimates 486—489 514
Averages over measures, cancellation conditions 513
Averages over measures, Fourier transform 486 513
Averages over measures, lifting technique 483—486
Averages over rectangles and averages over hypersurfaces 467—469
Averages over rectangles and real-variable structures 473 478
Averages over rectangles and singular Radon transforms 513—517
Averages over rectangles, estimates 526
Averages over rectangles, estimates 472—476 478—479
Averages over rectangles, estimates 476—482 485—486 490—493
Averages over rectangles, algebraic varieties 477 485—486
Averages over rectangles, angles and bounds 464—466
Averages over rectangles, arbitrary orientations 445—446 449 455
Averages over rectangles, convex 525—526
Averages over rectangles, definability on 492—493
Averages over rectangles, eccentricity and bounds 419 464—466
Averages over rectangles, finite type 476—477 490—493
Averages over rectangles, infinitely flat 493 512—513 525—526
Averages over rectangles, lacunary orientations 459—464
Averages over rectangles, on 493
Averages over rectangles, parabola 472—476
Averages over rectangles, singularities 493
Averages over rectangles, universal variety 477—482
Averages over rectangles, unrotated 83—85 446—447 458
Averages over rectangles, variable 516—517
Averages over submanifolds 467—469 472—493 512—517
Balls 8—9
Balls, equivalence 10
Balls, examples 9—12 37—39 41 361 473 478 542 620
Besicovitch set 433—440 445 453—456 510
Besicovitch set, higher-dimensional analogues 455
Bessel functions 131 338 347 356—357 390 395 426 430
BMO (bounded mean oscillation) 139—180 300—305
BMO (bounded mean oscillation) and 141 177 197 218 219 225
BMO (bounded mean oscillation) and 142—144 163—165 178 183
BMO (bounded mean oscillation) and Carleson measures 158—173 180—184 303
BMO (bounded mean oscillation) and Fourier integral operators 411 427
BMO (bounded mean oscillation) and harmonic functions 165
BMO (bounded mean oscillation) and homeomorphisms of 180 219
BMO (bounded mean oscillation) and square functions 158—173 180—184
BMO (bounded mean oscillation), distance to 180 186
BMO (bounded mean oscillation), dyadic 154 173
BMO (bounded mean oscillation), functions in 140—141 177—179
BMO (bounded mean oscillation), local 264
BMO (bounded mean oscillation), martingale 188
BMO (bounded mean oscillation), orthogonal expansions 166—173 (see also “Singular integrals”)
BMO (bounded mean oscillation), weak topology 166 186 301
Bochner — Riesz means 388—394 418—423
Bochner — Riesz means and 131
Bochner — Riesz means and restriction theorems 422
Bochner — Riesz means in 412—414 418—420
Bochner — Riesz means in , n > 3 423
Bochner — Riesz means on compact manifolds 431
Bochner — Riesz means, analogue for cones 521
Bochner — Riesz means, kernel 390 430
Bochner — Riesz means, maximal 420—423
Bochner — Riesz means, sharp exponents 389 414 430
Bounded distribution 89
Bounds independent of dimension 523—525
Brownian motion 189 642—643
Bump functions 293
Bump functions and 262
Bump functions and 100 (see also “Restricted boundedness”)
Bump functions and BMO 300—301
Bump functions and singular integrals 248—249 293—295
Calderon — Zygmund decomposition 16—18 20 51 101—105 110 138 150 431
Calderon — Zygmund kernels 289 305
Calderon — Zygmund operators 191 325
Calderon — Zygmund, symbolic calculus 268
Campbell — Hausdorff formula 584 635
Cancellation conditions 26 248 562 622
Cancellation conditions and averages over measures 513
Cancellation conditions for 262
Cancellation conditions for atoms see “Moment conditions”
Cancellation conditions, necessity 289—292 305—308
Cancellation conditions, special 295 299 624
Cancellation conditions, sufficiency 305—308\
Canonical coordinates 584 636
Canonical transformations 396
Carleman estimates 370
Carleson measures 58—59 78 314
Carleson measures and 59—61 63 77 161—163
Carleson measures and BMO 158—173 180—184 303
Carleson measures and weights 225
Carleson measures, operator 162—163 181—183
Carleson measures, space 59
Cauchy integral 310—316
Cauchy — Riemann operators 589—592
Cauchy — Riemann operators, tangential 545—547 592—593
Cauchy — Szego projection 5 532—543
Cauchy — Szego projection and 601 615—618
Cauchy — Szego projection and Lewy example 611—618
Cauchy — Szego projection on 537
Cauchy — Szego projection on 541—543
Cauchy — Szego projection, Fourier transform 573
Cauchy — Szego projection, kernel 277 536—541 575—577 580 585 601
Characteristic polynomial 231
Commutation relations 545 546 548—549 593
|
|
|
Ðåêëàìà |
|
|
|