Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Stanley R.P. — Enumerative Combinatorics: Volume 1
Stanley R.P. — Enumerative Combinatorics: Volume 1



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Enumerative Combinatorics: Volume 1

Автор: Stanley R.P.

Аннотация:

This book, the first of a two-volume basic introduction to enumerative combinatorics, concentrates on the theory and application of generating functions, a fundamental tool in enumerative combinatorics. Richard Stanley covers those parts of enumerative combinatorics with the greatest applications to other areas of mathematics. The four chapters are devoted to an accessible introduction to enumeration, sieve methods — including the Principle of Inclusion-Exclusion, partially ordered sets, and rational generating functions. A large number of exercises, almost all with solutions, augment the text and provide entry into many areas not covered directly. Graduate students and research mathematicians who wish to apply combinatorics to their work will find this an authoritative reference.


Язык: en

Рубрика: Математика/Алгебра/Комбинаторика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1986

Количество страниц: 306

Добавлена в каталог: 24.10.2004

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Polynomials of degree n, coefficients as finite differences (proposition)      38
Polynomials, bases for      208
Polyominos, definition      256
Polyominos, enumerating horizontally convex      257
Polytope, cyclic      199
Polytope, integral      238
Polytope, rational      235
Poset and $\lambda$-chain condition      220
Poset, basic concents      96
Poset, defining axioms      97
Poset, definition of isomorphic      98
Poset, extension of to total order      110
Poset, Gaussian      270
Poset, locally finite      98
Poset, table of examples      105
Power series, composition defined      6
Power series, rational of one variable      202
Prefabs, literature references      151
Preferential arrangement, definition      146
Preposet      153
Principle of Inclusion-Exclusion and binomial posets      145
Principle of Inclusion-Exclusion and maximal chains in rank-selected sub-poset      131
Principle of Inclusion-Exclusion and Moebius inversion on boolean algebra      118
Prins G. and direct products of posets      175
Probleme des menages and non-attacking rooks      73
Probleme des menages, lemma      73
Proctor R. and Gaussian posets      288
Proctor R. and zeta polynomial      179
Product of convergent formal power series (proposition)      6
Product of words      247
Product theorem and Moebius function      118
Provan J.S. and chain-partitionable posets      193
Pseudo-polynomial or quasi-polynomial      210
q-analogue for number of permutations with descent set S      70
q-binomial coefficient      26
q-binomial coefficient and partitions (proposition)      29
q-Dyson conjecture      54 95
q-multinomial coefficient and multisets      26
Quasi-generators      226
Quasi-generators, completely fundamental elements      228
Quasi-ordered set      153
Quasi-period of quasi-polynomial      210
Quasi-polynomial and convex polytope (theorem)      237
Quasi-polynomial and number of P-partitions (theorem)      216
Quasi-polynomial, definition      210
Quasi-polynomial, properties of (proposition)      210
Quotient of poset relative to closure      159
R-labelings, definition      133
R-labelings, literature references      150
r-stemmed V-partition      89
Rank generating function      99
Rank generating function and simplicial posets      135
Rank generating function, definition of      99
Rank of finite poset      99
Rank-selected Moebius invariant and lattice of subspaces of a vector space      132
Rank-selected Moebius invariant and permutations in Jordan — Hoelder set (theorem)      132
Rank-selected Moebius invariant of a poset      131
Rank-selected Moebius invariant, direct combinatorial interpretation      133
Rank-selected subposets, definition      131
Rank-selected subposets, literature references      150
Rational generating function, coefficients at negative integers      206
Rational generating function, definition      202
Rational generating function, exceptional set      204
Rational power series in one variable      202
Read R.C. and dimers      291
Reciprocity theorem for Ehrhart quasi-polynomials      238
Reciprocity theorem for linear homogeneous diophantine equations      230
Reciprocity theorem for order polynomials      194 219
Reciprocity theorem for P-partitions (theorem)      215
Recurrence and master duality theorem for Eulerian posets      138
Recurrence and Stirling number of the second kind      33
Recurrence for computing coefficients of rational function      205
Recurrence for computing coefficients, negative n      207
Recurrence for Moebius function (corollary)      125
Recurrence for number of linear extensions of poset      112
Recurrence for partitions into k parts      28
Recurrence, defining for Moebius function      116
Reduced Euler characteristic and topological significance of Moebius function      121
Reduced Euler characteristic, definition      120
Reduction of a permutation      172
Reduction, simple      172
Refinement of poset      98
Regev A., constant term of product expansion (exercise)      54
Regular local ring, one-dimensional complete      4
Relative volume of integral polytope      239
Remmel J.B., derangement proof (exercise)      92
Restricted direct product, definition and Moebius function of a poset      119
Restriction of maximal chain      168
Rise as element of permutation      24
Rival I. and core of irreducible poset      176
Rival I. and modular lattice      186
Rival I., finite atomic and coatomic lattice      177
Robbins D. and pleasant posets      182
Roberts F.S. and dimension of poset      176
Rook numbers for Ferrers board (theorem)      74
Rook polynomial and factorization method      255
Rook polynomial and k-discordant permutations      74
Rook polynomial and transfer-matrix method      253
Rook polynomial, equality for Ferrers boards      75
Rooks, non-attacking      71
Roos J.-E. and number of words in quotient monoid      277
Rota G.-C. and chromatic polynomial      187
Rota G.-C. and closure relations      183
Rota G.-C. and homology theory for posets      150
Rota G.-C. and valuation of finite distributive lattice      184
Rothschild B.L. and non-isomorphic n-element posets      174
Row-reduced echelon form and partitions of integers      29
Sachs H. and counting rooted forests (exercise)      94
Saks M. and order polynomial      285
Saturated chain      99
Scheid H. and bounds on Moebius function      186
Schroeder E. and posets and lattices      149
Schuetzenberger M.-P. and jeu de taquin      179
Schuetzenberger M.-P. and weak Bruhat order      199
Secant number or Euler number      149
Self-conjugate partition      58
Semi-Eulerian poset      122
Semilattice, meet- and join-      103
Semimodular lattice and R-labcling      135
Semimodular lattice as R-poset      134
Semimodular lattice, Mobius function of      126
Semimodular lattice, seven-element (figure)      104
Sequences and paths, literature reference      151
Series-parallel posets      100
Serre J.-P. and rational generating functions      276
Sets and multisets      13
Shapiro L. and duality theorem for face lattice of an n-cube      198
Shapiro L., finite differences (exercise)      62
Shearer J.B. and Moebius function      188
Shearer J.B. and number of words in quotient monoid      277
Shephard G.C. and cyclic polytopes      199
Shephard G.C. and zonotopes with integer vertices      290
Shift operator, E      36
Shuffle, definition      70
Shuffle, inverse of permutation      70
Sieve equivalence as variation of involution principle      80
Sieve method for determinine cardinality      64
Simplicial complex and Alexander duality theorem      137
Simplicial finite poset      135
Simplicial submonoid      226
Skyrme T.H.R., proof for partition counts (exercise)      59
Smith, B. Babington and tournament (exercise)      94
Solomon L. and Moebius algebra of poset      150
Solomon L. and subgroups of $Z^k$ of finite index      190
Spanning subsets of a vector space, number of      127
Species as alternative to binomial posets, references      151
Sperner family or antichain      100
Standard permutation      93
Standard representation of permutation      17
Stanley R. and an extremal finite distributive lattice      178
Stanley R. and chain-partitionable Cohen — Macaulay posets      194
Stanley R. and chain-partitionable posets      193
Stanley R. and comparability graph      194
Stanley R. and counting certain permutations      93
Stanley R. and Ehrhart (quasi-)polynomial      290
Stanley R. and finite supersolvable lattice      190
Stanley R. and incidence algebras of locally finite posets      183
Stanley R. and integral convex d-polytopes      288
Stanley R. and order ideals of $N^m$      277
Stanley R. and order polynomial      181
Stanley R. and pleasant posets      182
Stanley R. and toric varieties and hard Lefschetz theorem      198
Stanley R. and trapezoidal chains and antichains      179
Stanley R. and weak Bruhat order      199
Stanley R., convex polytope and Eulerian lattice      199
Stanley R., count of subsets mod n (exercise)      60
Stanley R., cycle types of permutations (exercise)      61
Stanley R., free R-module and supersolvable poset      192
Stanley R., intersection (co)homology      199
Stembridge J. and a zeta polynomial      179
Stembridge J. and trapezoidal chains and antichains      179
Stirling number of the first kind      18
Stirling number of the first kind and calculus of finite differences      36
Stirling number of the first kind and exponential generating function (proposition)      19
Stirling number of the first kind and polynomial generating function      208 209
Stirling number of the first kind and Twelvefold Way      35
Stirling number of the first kind as number of integer sequences (proposition)      20
Stirling number of the first kind, recurrence (lemma)      18
Stirling number of the second kind and characteristic polynomial of ${\Pi}_n$      128
Stirling number of the second kind and Moebius function of poset      128
Stirling number of the second kind and partitions of a set      33
Stirling number of the second kind and polynomial generating function      208 209
Stirling number of the second kind, exercise      57 47
Stirling numbers, examples of matrices      36
Stonesifer J.R. and uniform geometric lattice      191
Stong R.E. and core of irreducible poset      176
Strauss E.G. and basis for group of polynomials (exercise)      62
Strong fixed point, definition of, for permutation      49
Submonoid of monoid      247
Submonoid, simplicial (lemmas)      226
Subposet of P, S-rank selected      131
Subposet, convex      98
Subposet, induced      98
Subposet, weak      98
Subspaces of vector space, number of (proposition)      28
Sum of convergent formal power series (proposition)      6
Supersolvable finite lattice, additional properties      163—164
Supersolvable finite lattice, definition      134
Supersolvable finite lattice, non-semimodular (figure)      134
Szegoe G. and value of a determinant      184
Tangent number or Euler number      149
Tanny S.M. and counting certain permutations (exercise)      93
Temperley H.N. and counting rooted forests (exercise)      94
Terao H. and arrangements of hyperplanes      192
Terao H., Removal Theorem      192
Terquem's problem (exercise)      63
Thevenaz I., Moebius function of lattice of subgroups      191
Tournament      90
Transfer-matrix method      241
Transition matrix for polynomial bases      35 209
Tree, definition      293
Tree, definition of binary      23
Triangular board and rook number (corollary)      75
Triangular poset      173
Triangulation of pointed convex polyhedral cone      223
Trotter W.T.J. and dimension of poset      176
Twelvefold Way      31—40
Twelvefold Way, table      33
Two tree representations and permutation statistics      23
Underlying space of finite regular cell complex      121
Unfixed points for permutations and dependence on n      68
Uniform poset      165
Unimodal sequence of weight n      76
Unimodal sequence, expression for and V-partition (proposition)      78
Unimodal sequence, number of analogous to partitions of n      76
Unique factorization domain      4
V-partitions and unimodal sequences      76
V-partitions of n, definition      77
V-partitions, definition of r-stemmed      89
V-partitions, number of and sieve-theoretic formula      78
Valley as element of permutation      24
Valuation      160
van der Poorten A.J. and rational generating functions      276
Veress P., combinatorial proof (exercise)      52
Verma D.-N. and Bruhat order      199
Very pure monoids, characterization (propositions)      249
Wachs M. and Bruhat order      199
Walch R., counting triangles with perimeter n      281
Walk in digraph      241
Walk, closed      241 293
Walk, definition      293
Walker J. and topological properties of posets      150
Ward M. and Moebius inversion formula      149
Weak excedance of permutation      23
Weak subposet      98
Weight of multiset cycle, definition      47
Weighted cardinalities      66
Weil A. and Weil conjectures      279
Weil Conjectures      279
Weipht function for set      65
Weipht function on set of edges of digraph      241
Weisner L. and Moebius inversion formula      149
Weisner's theorem (corollary 3.9.3)      125
Well-defined operations (example)      5
Wensley C.D., Moebius function of subgroup lattice of symmetric groups      191
West D. and chains in posets      175
Whitney number of the first kind, coefficient of characteristic polynomial      129
Whitney number of the second kind and Dehn — Sommerville equations (proposition)      136
Whitney number of the second kind and number of elements of rank k      129
Whitworth W.A. and counting certain permutations (exercise)      93
Wilf H. and meet-semilattice      184
Wilson K. and q-Dyson conjecture      54
Wilson R. and permutation of finite lattice      185
Wilson R. and Whitney number inequalities      185
Winkler P. and comparability graph      194
Winston K. and outdegree sequences      290
Wisner R.J., counting triangles with perimeter n      281
Word as finite sequence of letters      247
Word to represent a permutation      16
Worley Dale and a recurrence for partitions (exercise)      59
Yoder M.F., count of subsets mod n (exercise)      60
Young diagram and partitions of n      29 30
Young's lattice      168
Zaslavsky T. and Dowling lattice      191
Zaslavsky T. and hyperplane arrangements      192
Zaslavsky T. and the acyclotope      290
Zeilberger D. and cluster generating function      280
Zeilberger D. and tournament (exercise)      95
Zeilberger D., proof of q-Dyson conjecture      54
Zeta function and zeta polynomials      130
Zeta function, definition      114
Zeta polynomials      129
Zeta polynomials and binomial posets      145
Zeta polynomials and number of chains      129
Zeta polynomials and order polynomial      130
Zeta polynomials, definition      129
Zeta polynomials, literature references      150
Ziegler G. and Moebius function      187
Ziegler G. and self-dual poset      175
Ziegler G. and zigzag posets      181
Ziegler G., partitions of integer ordered by refinement      192
Zonotope      290
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте