Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Stanley R.P. — Enumerative Combinatorics: Volume 1
Stanley R.P. — Enumerative Combinatorics: Volume 1



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Enumerative Combinatorics: Volume 1

Автор: Stanley R.P.

Аннотация:

This book, the first of a two-volume basic introduction to enumerative combinatorics, concentrates on the theory and application of generating functions, a fundamental tool in enumerative combinatorics. Richard Stanley covers those parts of enumerative combinatorics with the greatest applications to other areas of mathematics. The four chapters are devoted to an accessible introduction to enumeration, sieve methods — including the Principle of Inclusion-Exclusion, partially ordered sets, and rational generating functions. A large number of exercises, almost all with solutions, augment the text and provide entry into many areas not covered directly. Graduate students and research mathematicians who wish to apply combinatorics to their work will find this an authoritative reference.


Язык: en

Рубрика: Математика/Алгебра/Комбинаторика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1986

Количество страниц: 306

Добавлена в каталог: 24.10.2004

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Generating function, extracting information from      10
Generating function, fundamental for P-partition      212
Generating function, fundamental, and Jordan — Hoelder set (theorem)      214
Generating function, ordinary      141
Generating function, r-exponential      141
Generating function, rational, and adjacency matrices      245
Generating function, reasons for using      3
Generating function, sets associated with      143
Geometric lattice and partition lattice      128
Geometric lattice, definition of      105
Geometric representation of permutations      23
Gessel I.M. and a recurrence relation      282
Gessel I.M. and duality theorem for Eulerian posets      198
Gessel I.M. and formal power series for rational function      275
Gessel I.M. and strong fixed point of permutation (exercise)      61
Gessel I.M. and vector partitions      282
Gessel I.M., tournament (exercise)      94
Gleason A. and direct products of posets      175
Good I.J., proof of Dyson conjecture      54
Gordon B. and pleasant posets      182
Goresky M., intersection (co)homology      199
Gould H.W. and formal power series (exercise)      62
Goulden I.P. and binomial poset      201
Goulden I.P. and cluster generating function      280
Graded posets, definition      99
Graded posets, ranks of (table)      99
Graph, definition for permutation      71
Graph, directed      241
Greene C. and geometric sublattice      178
Greene C. and maximum size antichains      182
Greene C. and meet-distributive meet-semilattice      179
Greene C. and Moebius algebras      150
Greene C. and Moebius functions      149
Greene C. and rank inequality for finite geometric lattice      185
Greene C. and subsets of finite lattice      186
Greene C. and weak Bruhat order      199
Greene C., partitions of integer ordered by dominance      192
Gross O.A., chains in boolean algebra, literature references      151
Guibas L.J. and autocorrelation polynomial      280
Gunson J. and Dyson conjecture      54
Hadamard product and generating function with weighted edge      258
Hadamard product and sums over compositions      258
Hadamard product for rational power series (proposition)      207
Haiman M. and order ideals      182
Hajos G., combinatorial proof (exercise)      52
Hall P. and Moebius inversion formula      149
Hanlon P. and Gaussian poset      287
Harbater David and integral power series      276
Hasse diagram for $B_4$ (figure)      108
Hasse diagram for direct product of two posets (figure)      101
Hasse diagram of finite poset      98
Hasse diagram, edges of and R-labeling      133
Hasse diagram, method for drawing (figures)      109
Hasse diagram, method for drawing, finite order ideals of poset      108
Hasse diagrams of lattices (figures)      102
Hawkins T. and history of group representations      290
Hilton P.J. and duality for abelion groups      190
Hock, J.L. and dimers      291
Horizontally convex polyominos      256
Hurwitz A. and Fatou's lemma      275
Hyperplane arrangement      166
Igusa, J.-L. and congruences mod $p^n$      279
Incidence algebra and algebra of upper triangular matrices      114
Incidence algebra of a locally finite poset      113
Incidence algebra, subalgebra of and binomial poset (theorem)      144
Incident, edges and vertices      293
Inclusion-Exclusion, dual form      66
Inclusion-Exclusion, Principle of      64
Inclusion-Exclusion, Principle of (theorem)      64
Indecomposable permutation      49
Index, greater (major), of permutation      216
Indik R. and a recurrence relation      282
Indistinguishable, elements of set      31
Inequivalent injective functions, number of, definition      32
Inequivalent sets      31
Integral convex d-polytope and relative volume      239
Interior of simplicial submonoid      226
Inverse of elements of formal power series      4
Inverse of matrix for Stirling number of the second kind      35
Inversion and permutation statistics      20
Inversion table of permutation      21
Inversion, definition of, for multiset permutation      26
Inversion, definition of, for permutation      21
Inversion, number of, for permutations (corollary)      21
Involution principle for converting proofs to combinatorial proofs      80
Involutions      79
Involutions, construction of for intersecting lattice paths      84
Irreducible finite poset      155
Isomorphic posets      98
Jackson D.M. and cluster generating function      280
Jackson D.M. and descents of permutations      201
Jambu M. and intersections of hyperplanes      192
Jeu de taquin      179
Join for elements of poset      102
Join-irreducible of finite distributive lattice (proposition)      106
Join-irreducible, element of lattice      106
Jordan J.H., counting triples      281
Jordan, Charles, number of objects of finite set (exercise)      91
Jordan-Hoelder set and P-partitions (lemma)      213
Jordan-Hoelder set and supersolvable lattices      164
Jordan-Hoelder set, definition of      131
k-composition of n, schematic representation      15
k-composition, definition      14
k-composition, weak      15
k-discordant permutations, problem of      74
Kahn J. and order polynomial      285
Kasteleyn P.W. and dimers      291
Katz N.M. and Weil conjectures      279
Kelly D. and dimension of poset      176
Kelmans A.K. and counting rooted forests (exercise)      94
Kendall M.G. and tournament (exercise)      94
Kim D. and chromatic polynomial      292
Kirdar M.S., proof for partition counts (exercise)      59
Klarner D.A. and dimers      291
Klarner D.A. and rational generating functions      276
Klarner D.A., decomposition of permutations of sets (exercise)      47 57
Kleitman D.J. and free distributive lattice      181
Kleitman D.J. and maximum-size antichains      182
Kleitman D.J. and meet-distributive meet-semilattice      179
Kleitman D.J. and meet-irreducible elements of finite lattice      177
Kleitman D.J. and non-isomorphic n-element posets      174
Kleitman D.J. and order ideals      182
Kleitman D.J. and outdegree sequences      290
Kleitman D.J., combinatorial proofs (exercise)      52
Knuth D.E. and monoid      189
Knuth D.E. and number of words in quotient monoid      277
Knuth D.E., inversion polynomial (exercise)      61
Knuth D.E., multiset permutations      57
Koblitz N. and Well conjectures      279
Koh K.M. and finite distributive lattice      182
Koszul complex      92
Koszul relation      92
Kratzer C., Moebius function of lattice of subgroups      191
Kreweras G. and non-crossing partitions      197
Kreweras G. and Young's lattice      195
Kummer E., binomial coefficients and primes (exercise)      53
Kung J. and subsets of finite lattice      186
L-labeling, literature references      150
Lascoux A. and weak Bruhat order      199
Lattice      102
Lattice and Moebius algebras      124
Lattice path      82
Lattice path and number of words in quotient monoid      277
Lattice path and pleasant posets      182
Lattice path and volume of convex polytopes      290
Lattice path, cycle types of permutations (exercise)      61
Lattice path, diagram      82
Lattice path, enumeration of      44 111
Lattice path, intersecting      82
Lattice, atomic      104
Lattice, complemented      104
Lattice, complete      103
Lattice, distributive      105
Lattice, finitary distributive and FTFDL (proposition)      107
Lattice, finitary distributive, definition      107
Lattice, finite distributive, fundamental theorem for      106
Lattice, finite geometric      105
Lattice, finite semimodular      104 105
Lattice, free distributive      158
Laurent series and rational generating function      206
Lexicographically shellable posets and CL-labeling      151
Lie algebras, semi-simple      288
Lieb E.H. and dimers      291
Lindstroem B. and meet-semilattice determinant      184
Linear extension of poset      110
Linear ordering of elements of multiset      16
Link in a finite simplicial complex      121
Linked sets, literature references      151
Loop of digraph      241
Lucas E., binomial coefficients and primes (exercise)      53
Lucas number and permutation enumeration      246
Lyndon R.C. and multiset permutations (exercise)      57
Macdonald I.G., constant term of product expansion (exercise)      54
MacMahon P.A. and recurrence formula (exercise)      58
MacMahon P.A. and Young's lattice      195
MacNeille completion of irreducibles of finite lattice      176
MacPherson R., intersection (co)homology      199
Magic squares, number of (proposition)      232
Mani P. and Ehrhart polynomial      288
Markowsky G. and free distributive lattice      181
Maximal chain and supersolvable finite lattice      134
Maximal chains in distributive lattice      110
Maximal chains, number of and R-labeling (theorem)      133
McMullen P. and cyclic polytopes      199
McMullen P. and Ehrhart quasi-polynomial      290
McQuistan R.B. and dimers      291
Meet-distributive, meet-semilattice      156
Meet-semilattice, conditionally a lattice (proposition)      103
Meuser D. and congruences mod $p^n$      279
Milne S., Stirling number of the second kind (exercise)      60
Modular lattice      104
Modular lattice as poset of subspaces of a vector space      127
Moebius algebras, definition for lattice      124
Moebius algebras, theorem      124
Moebius function and count of permutations (lemmas)      147
Moebius function and Eulerian posets (lemmas)      136
Moebius function and Eulerian posets (proportion)      137
Moebius function and finite regular cell complex (proposition)      122
Moebius function and meet of coatoms (corollary)      126
Moebius function for lattice faces of triangulation      224
Moebius function of poset      116
Moebius function of semimodular lattice (proposition)      126
Moebius function, classical      9 119
Moebius function, computing (proposition)      119
Moebius function, determination of, for a boolean algebra      145
Moebius function, function      9
Moebius function, techniques for computing      117
Moebius inversion and Euler characteristic      119
Moebius inversion formula and zeta function      116
Monjardet B. and meet-distributive meet-semilattice      179
Monoid and homogeneous linear equations      221
Monoid, definition      163
Monoid, free, factorization in      247
Monoid, positive      222
Moon J.W. and counting rooted forests (exercise)      94
Moser W.O.J., Terquem's problem (exercise)      63
Multichains and zeta function      115
Multichains and zeta polynomial      130
Multichains of poset      100
Multinomial coefficients q      26
Multinomial coefficients, definition      16
Multiset cycle      47
Multiset permutation      47
Multiset, definition      15
Multiset, generating function approach      15
Multiset, permutations of      16
Multisets, permutations of      25
n-coloring of a graph      162
n-stack      76
Nelson R.B. and volume of a convex polytope      290
Non-crossing partitions      197
Odlyzko A.M. and autocorrelation polynomial      280
Odlyzko A.M., count of subsets mod n (exercise)      60
Open subset of preposet      153
Order by inclusion, poset of subsets      97
Order by refinement, partitions of a set      97 127
Order by refinement, partitions of n      166
Order complex of poset      120
Order ideal, definition of      100
Order ideal, dual      100
Order ideal, principal      100
Order polynomial and $\lambda$-chain condition (corollary)      221
Order polynomial and chain length (corollary)      220
Order polynomial, definition      130
Order polynomial, fundamental property (theorem)      219
Order polynomial, reciprocity theorem      194 219
Order polynomial, strict      218
Order-reversing map      211
Order-reversing, strict      211
Ordinary generating function      3
Orientation of edges of finite graph      273
Orientation, acyclic      273
Orlik — Solomon — Terao conjecture      192
Outdegree sequence of orientation      273
P-compatible permutation      171
P-partition and linear homogeneous equations, equivalence of      222
P-partition and strict P-partition (lemma)      220
P-partition, definition      211
P-partition, strict P-partitions and $\delta$-chain condition      218
Partial G-partition of a set      165
Partial partition of a set      165
Partition and q-binomial coefficient (propositions)      29
Partition of an integer      28
Partition of finite set, definition      33
Partition with restricted parts      38
Partition, definition of self-conjugate      38
Partitions of n-set, definition      33
Partitions of n-set, lattice of      97 127
Partitions of n-set, ordered      34
Pascal's triangle, generalized      112
Peak as element of permutation      24
Peirce C.S. and partially ordered sets and lattices      149
Permutation enumeration and binomial posets      147
Permutation statistics      17
Permutation statistics, cycle structure      17
Permutation statistics, descents      21
Permutation statistics, inversions      20
Permutation with k cycles, and Stirling number      18
Permutations and factorization method      252
Permutations of a multiset      16
Permutations of a multiset and inversions (proposition)      26
Permutations with descent set S, determinant expression for      69
Permutations with restricted position      71
Permutations, alternating and number of complete binary trees      24
Permutations, equivalent      89
Permutations, k-discordant and factorization method      253
Permutations, mapped to inversion table (proposition)      21
Permutations, number, with specified number of maxima (corollary)      20
Permutations, standard      93
Philip Hall's theorem (Proposition 3.8.5)      119
Plane trees and face-lattice of an n-cube      170
Pleasant poset      158
Poguntke W. and comparability graph      194
Point lattice      104
Pollack J. and dimers      291
Polya G. and power series with integer coefficients      282
Polya G. and value of a determinant      184
Polya's enumeration theorem      48
Polynomials      208
Polynomials as coefficients of rational generating functions      208
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте