Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Mott J., Kandel A., Baker T. — Discrete mathematics for computer scientists and mathematicians
Mott J., Kandel A., Baker T. — Discrete mathematics for computer scientists and mathematicians



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Discrete mathematics for computer scientists and mathematicians

Авторы: Mott J., Kandel A., Baker T.

Аннотация:

An awesome book on Discrete Math. A must read for an undergrad CS student


Язык: en

Рубрика: Computer science/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd

Год издания: 1986

Количество страниц: 763

Добавлена в каталог: 07.05.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Undetermined coefficients, method of, trial solution for exponentials      312—315
Undetermined coefficients, method of, trial solutions for polynomials      319
Undetermined coefficients, method of, trial solutions for products of, polynomials and exponentials      315—317
Uniform probability density function      732
Uniform-shape logic symbols      601—602
Unilaterally connected vertices      391—392
Union of fuzzy sets      705 731
Union of graphs      457
Union of relations      379
Union of sets      4—5
Universal generalization      98
Universal quantifier      83—87 89—91
Universal set      2—3
Universal specification      97—98
Universe (of discourse)      2—3 81—82
Unordered partition of a set      181—184
Unordered selection of objects      143
Unsaturated edge      639
Unwarranted assumptions, fallacy of      29—30
Upper bound of a set      364
Vacuous proof      61
Valid inference      46—47
Value knowledge base (VKB)      725—727
Value of a flow      640
Vandermonde's identity      204—205
Veitch diagram      606
Veitch, E.W.      606
Venn diagrams      6 212 214
Venn, John      6
Vertex coloring of a graph      558 567
Vertex labeling of a graph      444
Vertex-disjoint paths      442
Vertices of graphs, "hub"      457
Vertices of graphs, adjacent      439
Vertices of graphs, ancestor      482
Vertices of graphs, AND-VERTEX      729—731
Vertices of graphs, child      482 507
Vertices of graphs, circuit      388
Vertices of graphs, coloring      558 567
Vertices of graphs, connected      388 472
Vertices of graphs, conversation equation      638
Vertices of graphs, covering of edges      695
Vertices of graphs, cut vertex      472
Vertices of graphs, cycle      388
Vertices of graphs, defined      332
Vertices of graphs, degree      439
Vertices of graphs, descendant      482
Vertices of graphs, dual graph      569
Vertices of graphs, edges between, joining      437
Vertices of graphs, endpoints      388
Vertices of graphs, flow into, out of      638 640
Vertices of graphs, greedy algorithm for coloring      567
Vertices of graphs, height of, in directed forest      500—501
Vertices of graphs, in-degree      333 439
Vertices of graphs, initial      442
Vertices of graphs, intermediate      634
Vertices of graphs, internal      482
Vertices of graphs, isolated      439
Vertices of graphs, labeling of      674—675
Vertices of graphs, left child      507
Vertices of graphs, level of, in forest      501
Vertices of graphs, level of, in rooted tree      469
Vertices of graphs, level-order index, in binary tree      509
Vertices of graphs, neighbors      439
Vertices of graphs, net flow into, out of      638 640
Vertices of graphs, nondirected path      388
Vertices of graphs, number of, in directed tree      502—503
Vertices of graphs, OR-VERTEX      729—731
Vertices of graphs, out-degree      333 439
Vertices of graphs, parent      482 507
Vertices of graphs, quasi-strongly connected      498—500
Vertices of graphs, right child      507
Vertices of graphs, root      482
Vertices of graphs, simple path      388
Vertices of graphs, sink, source      633 638 640
Vertices of graphs, strongly connected      391—392
Vertices of graphs, terminal      442
Vertices of graphs, traverse      389
Vertices of graphs, unilaterally connected      391—392
Vertices of graphs, Very large scale integration (VLSI)      600
Vertices of graphs, weakly connected      391—392
VKB      see "Value knowledge base"
VLSI      see "Very large scale integration"
Warrants of an argument      19—20
Warshall's algorithm      407—412 539
Warshall, S.      402 407
Watkins, M.E.      464
Weakly connected vertices      391—392
Well-defined function for sets      13
Well-ordered property of integers      105
Well-ordered sets      366—367
Welsh — Power algorithm      565—566
Welsh, D.J.A.      565
Wheel graph      457 562—563
Working backward      26—27
Working forward      20—21
Zadeh, L.A.      699
1 2 3 4 5 6 7
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте