Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Mott J., Kandel A., Baker T. — Discrete mathematics for computer scientists and mathematicians
Mott J., Kandel A., Baker T. — Discrete mathematics for computer scientists and mathematicians



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Discrete mathematics for computer scientists and mathematicians

Авторы: Mott J., Kandel A., Baker T.

Аннотация:

An awesome book on Discrete Math. A must read for an undergrad CS student


Язык: en

Рубрика: Computer science/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd

Год издания: 1986

Количество страниц: 763

Добавлена в каталог: 07.05.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Searching algorithms, DFS      482 485
Searching sequences      415
selections      see "Combinations" "Permutations"
Self-dual 2—valued Boolean functions      135
Self-dual plane graph      526—527
Self-loop      437
Semilattice      368 371
Sentence parsing      505
Sequences, "probe"      358
Sequences, binary search      415—418
Sequences, de Bruijn      539—541
Sequences, Fibonacci      111 270—273 278
Sequences, generating functions for, table      289
Sequences, graphic      444
Sequences, head of      282
Sequences, Lucas      278
Sequences, merging sorted sequences      423—424
Sequences, searching      415
Sequences, sorted      415
Sequences, tail of      282
Sequential counting      128—132
Series, arithmetic      110 115
Series, formal power      239 247—251
Series, geometric      110 116 249—251
SES      see ""Soft" expert systems"
Sets, "extraordinary"      9
Sets, "ordinary"      9
Sets, absolute complement      4
Sets, antisymmetric relation      11
Sets, associative binary operations      16
Sets, associative property      5
Sets, binary operations      16
Sets, binary relation on      10
Sets, Boolean sum      5
Sets, Cantor's paradox      7
Sets, cartesian product      8 10
Sets, chain      363
Sets, characteristic function      2
Sets, closure property      383—384
Sets, commutative binary operations      16
Sets, commutative property      5
Sets, comparable elements      363
Sets, composition of relation      14—15
Sets, congruence class      12
Sets, congruence modulo n      12
Sets, containment      3—4
Sets, correspondence      13
Sets, countable      367
Sets, definition      1
Sets, DeMorgan's Laws      6 40—41 49 50 61 86
Sets, description      2—3
Sets, disjoint      5 211
Sets, distributive laws      5
Sets, domain of relation      10—11
Sets, elements      1
Sets, empty      4
Sets, enumerations      367—368
Sets, equality      4
Sets, equivalence relation      11
Sets, function, defined      13
Sets, glb      364
Sets, greatest element      364
Sets, idempotent property      5
Sets, images      13
Sets, incomparable elements      363
Sets, intersection      5
Sets, into function      14
Sets, inverse function      14
Sets, join of elements      368
Sets, least element      364
Sets, lower bound      364
Sets, lub      364
Sets, many-to-one function      14
Sets, mapping      13
Sets, meet of elements      368
Sets, members      1
Sets, null      4
Sets, one-to-one correspondence      14
Sets, one-to-one function      13
Sets, onto function      14
Sets, operator      13
Sets, ordered pair      9
Sets, P-closure      384
Sets, partially ordered      see "Posets"
Sets, partition      350—351
Sets, power      7
Sets, preimages      13
Sets, proper subset      3—4
Sets, range of relation      10—11
Sets, reflexive relation      11
Sets, relation on      10
Sets, relative complement      4
Sets, Russell's paradox      7 9
Sets, single-valued function      13
Sets, singleton      4 442
Sets, subset      3—4
Sets, symmetric relation      11
Sets, symmetrical difference      5
Sets, system of distinct representatives      657 686
Sets, totally ordered      363
Sets, transformation      13
Sets, transitive relation      11
Sets, uncountable      367
Sets, union      4—5
Sets, universal      2—3
Sets, upper bound      364
Sets, Venn diagrams      6 212 214
Sets, well-defined function      13
Sets, well-ordered      366—367
Seven-segment display (SSD)      596—600 609 610
Sheffer stroke function      593
Shell sort algorithm      419
Shift registers      539—541
Shifting properties of generating functions      285—290
Sieve method      see "Inclusion-exclusion principle
Similarity relations      713 726
Simple circuit      388 442
Simple digraph      333
Simple graph      437 438
Simple path      388 442
Simplification rule of inference      49
Single-valued function for sets      13
singleton set      4 442
Sink vertex      633 638 640
Size of a graph      437
Slack of an edge      639
Small scale integration (SSI)      600
Sorted lists, merging      282—284
Sorted sequences      415
Sorting algorithms, binary search      415—418
Sorting Algorithms, bubble sort      297 419 423
Sorting algorithms, interchange sort      418—423
Sorting Algorithms, merge sort      282—284 425—426
Sorting algorithms, run times      347
Sorting algorithms, Shell sort      419
Sorting algorithms, successive minima      419
Sorting algorithms, topological sort      428—432
Source vertex      633 638 640
Spanning subgraph      452
Spanning trees, BFS      482—485
Spanning trees, Cayley's formula      497
Spanning trees, defined      480
Spanning trees, DFS      482 485
Spanning trees, directed      480
Spanning trees, Kruskal's algorithm      486—489
Spanning trees, maximal      493
Spanning trees, minimal      485—489
Spanning trees, Prim's algorithm      494
Spanning trees, properties of      480—482
Spanning trees, Pruefer code      495—497
Spanning trees, terminology associated with      482
Specialization      22
SSD      see "Seven-segment display"
SSI      see "Small scale integration"
Stanford Research Institute      722
Stanford University      722
Star graph      457—458
State diagrams, shift register      540
Stirling number of the second kind      209—210
Strategies for problem solving      see "Reasoning"
strings      373—375
Strong inductive hypothesis      111 see
Strong mathematical induction      111—115 see
Strongly connected vertices      391—392
Subalgebra, Boolean      584
Subgraphs      334 452
Subgraphs, complement of      455—456
Subgraphs, connected components      391—392
Subject-predicate analysis      80—81
Subnormal fuzzy set      700
Subroutine, recursive      108
Subset of a fuzzy set      700
Subset of a set      3—4
Substitution solutions for recurrence relations      281—285
Subtree      482 507
Successive minima algorithm      419
Sum bit      614
Sum of generating functions      240
Sum rule      22 126—132 see principle
Sum-of-products form      591 605
Support of a fuzzy set      700
Switching mechanisms      see also "Arithmetic logic unit" "Boolean minimization
Switching mechanisms, AND function      601 603
Switching mechanisms, equivalent      596
Switching mechanisms, EXCLUSIVE-OR function      602 603
Switching mechanisms, gate      596
Switching mechanisms, gate minimization      600—601
Switching mechanisms, Gray-code (to binary-code converter)      604
Switching mechanisms, INCLUSIVE-OR function      601 603
Switching mechanisms, INVERTER function      602 603
Switching mechanisms, NAND function      602 603
Switching mechanisms, NOR function      602 603
Switching mechanisms, seven-segment display      596—600 609 610
Syllogism, disjunctive      49
Syllogism, hypothetical      48 49
Symmetric closure of a relation      383
Symmetric directed graph      438
Symmetric relation on a set      11
Symmetrical difference of fuzzy sets      732
Symmetrical difference of sets      5
Symmetry of a binary relation      339 340
Symmetry of a fuzzy binary relation      713
Symmetry of a similarity relation      726
Symmetry of binomial coefficients      191
System of Distinct Representatives Problem      657 686 691
t-level set      708
t-part partition of a set      178
Tail of a sequence      282
Tautology      38
Terminal vertex      442
Termination of an algorithm      404
Terms in formal power series      239
Tetrahedron, edge graph of      458
The Assignment Problem      686
The Binomial theorem      201—205 see
The Chinese Remainder Theorem      360
The Chromatic Number Problem      406
The Coconut Problem      361
The Committee Problem      686 691
The Division Algorithm      64
The Extension Principle      714
The Four-Color Problem      569—571
The Fundamental Theorem of Arithmetic      118
The Hamiltonian Cycle Problem      406
The Knight's Tour Puzzle      555
The Koenigsberg Bridges      535—538
The Lancaster Equations of Combat      275
The Marriage Problem      687 689—691
The Multinomial theorem      205—207 see
The Planar Subgraph Problem      406
The Scheduling Problem      558—560
The Sieve of Eratosthenes      224—225
The Subgraph Isomorphism Problem      406
The Towers of Hanoi      282
Thin directed tree      506
Topological sorting      428—432
Torus      607
Total order relation      363
Transformation      see "Functions"
Transitive (reflexive) closure of a fuzzy binary relation      713
Transitive (reflexive) closure of a relation      383
Transitive (reflexive) closure, Warshall's algorithm      407—412 539
Transitive relation on a set      11
Transitive rule      48 49
Transitivity in expert systems      724
Transitivity of a binary relation      339—340
Transitivity, improvement      727
transport networks      see "Networks"
Traversable multigraph      537
Traversal algorithms      514—515 518
Traverse (path)      389
Trees, B-tree      503—504
Trees, binary search      512—514
Trees, child in      482
Trees, combinatorial relationships      501—503
Trees, complete binary      509—510
Trees, defined      468
Trees, descendant in      482
Trees, economy      486
Trees, edges      483
Trees, full      506
Trees, height of      501
Trees, height-balanced      510—512
Trees, internal vertex      482
Trees, leaf of      482
Trees, minimal spanning      494
Trees, nondirected      469
Trees, nontrivial      469
Trees, operator prefix and postfix notation      471—472
Trees, ordered      517
Trees, parent in      482
Trees, properties of      473—476
Trees, Pruefer code      495—497
Trees, root of      469
Trees, rooted      468
Trees, subtree      482
Trees, traversal algorithms      514—515 518
Trees, trivial      469
Trinomial      205
Tripartite graph      467
Triple primes      76
Trivial path      442
Trivial proof      61
Trivial tree      469
Truth set of a proposition      84
Truth tables      35 37—41 46
Truth tables for logic networks, AND function      601
Truth tables for logic networks, EXCLUSIVE-OR function      602
Truth tables for logic networks, full-adder      616
Truth tables for logic networks, Gray-code to binary-code converter      604
Truth tables for logic networks, half-adder      615
Truth tables for logic networks, INCLUSIVE-OR function      601
Truth tables for logic networks, INVERTER function      602
Truth tables for logic networks, multiplexers      623 625
Truth tables for logic networks, NAND function      602
Truth tables for logic networks, NOR function      602
Truth tables for logic networks, seven-segment display      597
Twin primes      76
Uncountable sets      367
Undetermined coefficients, method of, defined      311
1 2 3 4 5 6 7
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте