Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Mott J., Kandel A., Baker T. — Discrete mathematics for computer scientists and mathematicians
Mott J., Kandel A., Baker T. — Discrete mathematics for computer scientists and mathematicians



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Discrete mathematics for computer scientists and mathematicians

Àâòîðû: Mott J., Kandel A., Baker T.

Àííîòàöèÿ:

An awesome book on Discrete Math. A must read for an undergrad CS student


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2nd

Ãîä èçäàíèÿ: 1986

Êîëè÷åñòâî ñòðàíèö: 763

Äîáàâëåíà â êàòàëîã: 07.05.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Closed path      442
Closure property      383—384
Code, generation using shift registers      541
Code, Gray      604
Code, Pruefer      495—497
Coefficients in power series      239
Coefficients of generating functions      247—251
Coloring of a graph      see "Chromatic numbers"
Combinations      see also "Inclusion-exclusion principle of" "Permutations"
Combinations with unlimited repetition      164—169
Combinations, binomial coefficients      see "Binomial coefficients"
Combinations, defined      143
Combinations, ordered partitions      177—181 182—184
Combinations, repetition numbers      144 146
Combinations, summary of use      182—184
Combinations, unordered partitions      181—184
Combinations, with constrained repetitions      172—177
Combinations, without repetitions      151—154
Combinatorial circuits      see "Switching mechanisms"
Common difference      110
Common ratio      110 249
Commutative binary operation on a set      16
Commutative property of sets      5
Complement of a fuzzy set      705
Complement of a relation      379
Complement of a subgraph      455—456
Complement, absolute, of a set      4
Complete binary tree      509—510
Complete bipartite graph      457 531—532
Complete graph      452—453 531
Complete k-partite graph      467
Complete matching      687 689—691
Complexity of algorithms      407
Components of a graph      472
Composite integer      120
Composition in expert systems      724
Composition of fuzzy relations      713
Composition of relations      382—383
Composition of set relations      14—15
Compound interest as a recurrence relation      274
Computational complexity theory      407
Concentration of a fuzzy set      706
Conclusion      35 47
Conditional proof      62—63 72
Conditional proposition      35
Congruence class of a set      12
Congruence modulo m      354
Congruence modulo n equivalence relation      12
Conjecture      23—24
Conjunction in Boolean algebras      591—592
Conjunction in expert systems      724
Conjunction of propositions      34
Conjunction rule of inference      49
Conjunctive normal form for Boolean expressions      591—592
Connected biparite graph      548
Connected components of a graph      391—392 472
Connected vertices      388 472
Connectives, logical      34—38
Consequent of an implication      35
Consistent postulates      579
Constant term in power series      239
Constructive dilemma      49
Constructive existence proof      87—88
Containment of sets      3—4
Contingency      38
Contracted edge      494
Contradiction      38
Contrapositive, law of      40 41—42
Conventional set, theory      2 see
Conversation equation      638
CONVERSE      37 41—42
Convex combination of fuzzy sets      707—708
Convex fuzzy set      732
Cook, Stephen      406
Correctness of an algorithm      404
Correspondence      see "Functions"
Countable sets      367
Counterexample      87
Counting, principles of, applications      134—136
Counting, principles of, disjunctive counting      126—132
Counting, principles of, factorials, defined      136
Counting, principles of, indirect counting      132—133
Counting, principles of, one-to-one correspondence      133—134
Counting, principles of, sequential counting      128—132
Covering of edges      695
Critical planar graph      529
Cross edges      483
Crossing number of a graph      534
Crossover point      701
Crossovers of a graph      523
Cube, edge graph of      458
Cubic graph      439 464—465
Cut edge      472
Cut vertex      472
Cut-set      654—655
Cuts, capacity of      647—648
Cuts, edge cut-set      654—655
Cuts, flow across, net      649
Cuts, minimal      645—652
Cuts, S-D      647—651
Cycle graph      457
Cycles, directed      388
Cycles, Hamiltonian      543—551
Cycles, nondirected      442
Dagger function      593
Data selector      see "Multiplexers"
de Bruijn diagrams      540
De Bruijn sequences      539—541
Deficiency of a directed bipartite graph      693
Degree of a vertex      333 439
Degree sequence of a graph      439
DeMorgan's laws      6 40—41 49 50 61 86 584
Denial of a proposition      34
Depth-first search (DFS)      482 485
Derangements      226—228 274
Descendant of a vertex      482
Destructive dilemma      49
Deterministic algorithms      419
Development, stages of      21—22
DFS      see "Depth-first search"
Diagonal argument in proofs      377—378
Diagonal edge      548
Diameter of a graph      465
Diaphantus      362
Difference equations      see "Recurrence relations"
Difference of relations      379
Digraphs      see "Directed graphs"
Dilation of a fuzzy set      706
Dilemma, constructive and destructive      49
Dirac's theorem      551
Dirac, G.A.      561
Direct proof      61 63—64
Direct sum of Boolean algebra      585—586
Directed bipartite graphs, complete matching for      687 689—691
Directed bipartite graphs, deficiency of      693
Directed bipartite graphs, Hall's Marriage Theorem      689—691
Directed bipartite graphs, Koenig's Theorem      695
Directed bipartite graphs, Latin rectangle, square      693
Directed bipartite graphs, matching for      687 688—689
Directed bipartite graphs, maximal matching for      687
Directed forest      500—501
Directed graphs      see also "Graphs"
Directed graphs, "degree spectrum"      334
Directed graphs, adjacency matrices      396—402
Directed graphs, antisymmetric      339 340
Directed graphs, asymmetric      339 340
Directed graphs, Boolean matrices      396—402
Directed graphs, capacity function      633
Directed graphs, circuit      388
Directed graphs, connected component      391—392
Directed graphs, cut-set      654—655
Directed graphs, cycle      388
Directed graphs, defined      332 437
Directed graphs, directed path      388
Directed graphs, disconnecting set      654
Directed graphs, edges      see "Edges of graphs"
Directed graphs, endpoints      388
Directed graphs, invariant      334
Directed graphs, irreflexive      339 340
Directed graphs, isomorphic      334—335
Directed graphs, labeling      632—633 636
Directed graphs, loop-free      333
Directed graphs, Menger's Theorem      695
Directed graphs, networks      see "Networks"
Directed graphs, nontrivial path      388—389
Directed graphs, paths      see "Paths in graphs"
Directed graphs, reflexive      339 340
Directed graphs, simple      333
Directed graphs, simple path      388
Directed graphs, strongly connected vertices      391—392
Directed graphs, symmetric      339 340 438
Directed graphs, transitive      339—340
Directed graphs, transport networks      see "Networks"
Directed graphs, unilaterally connected vertices      391—392
Directed graphs, vertices      see "Vertices of graphs"
Directed graphs, viewed as nondirected graphs      438—439
Directed graphs, weakly connected vertices      391—392
Directed multigraph      333
Directed path      388
Directed spanning tree      480
Directed trees      468—470 498—504
Directed trees, full      506
Directed trees, ordered      517
Directed trees, regular      505
Directed trees, thin      506
Disconnecting set of edges      654
Discovery, aspects of      21—22
Disjoint sets      5 211
Disjunction in Boolean algebras      591—592
Disjunction in expert systems      724
Disjunction of propositions      34
Disjunctive counting      126—132
Disjunctive normal form for Boolean expressions      591—592
Disjunctive syllogism      49
Disposition      722
Distinct representatives, system of      657 686
Distinctive-shape logic symbols      601—602
Distribution, possibility      715—720
Distributive laws for sets      5
Divide-and-conquer relations      285 321—322
Divisibility tests      359—360
Division of formal power series      247—251
Dodecahedron, edge graph of      458
Dodecahedron, Hamilton's game      543
Domain in the FRKB      725
Domain of relation on a set      10—11
Double negation, law of      40
Dual graph of a plane graph      526—527
Dual graph, vertices of      569
Dual of a poset      370
Economy tree      486
Edge cut-set      654—655
Edge labeling of a graph      444
Edge-disjoint paths      442
Edges of graphs, adjacent to      333
Edges of graphs, backward      666
Edges of graphs, between vertices      437
Edges of graphs, bridge      472 541
Edges of graphs, capacity constraint      638
Edges of graphs, capacity of      633—634 647—648
Edges of graphs, circuit      388
Edges of graphs, complete matching      687 689—691
Edges of graphs, contracted      494
Edges of graphs, conversation equation      638
Edges of graphs, cross      483
Edges of graphs, crossovers      523
Edges of graphs, cube      458
Edges of graphs, cut edge      472
Edges of graphs, cut-set      654—655
Edges of graphs, cycle      388
Edges of graphs, defined      332
Edges of graphs, diagonal      548
Edges of graphs, disconnecting set      654
Edges of graphs, dodecahedron      458
Edges of graphs, edge cut-set      654—655
Edges of graphs, endpoints      388
Edges of graphs, flow across      see "Flows in Net-works"
Edges of graphs, forward      666
Edges of graphs, hyperedges      728—731
Edges of graphs, icosahedron      458
Edges of graphs, incident from, on, to      333 439
Edges of graphs, joining vertices      437
Edges of graphs, labeling      632—633 636
Edges of graphs, left, in binary tree      507
Edges of graphs, loop      333 437
Edges of graphs, matching      687 688—689
Edges of graphs, maximal matching      687
Edges of graphs, minimal cut      645—652
Edges of graphs, multiple      333
Edges of graphs, multiplicities      535—536
Edges of graphs, nondirected path      388
Edges of graphs, octahedron      458
Edges of graphs, platonic solids      458
Edges of graphs, reverse      666
Edges of graphs, right, in binary tree      507
Edges of graphs, S-D cut      647—651
Edges of graphs, saturated      639
Edges of graphs, self-loop      437
Edges of graphs, simple path      388
Edges of graphs, slack of      639
Edges of graphs, tetrahedron      458
Edges of graphs, tree      483
Edges of graphs, unsaturated      639
Edges of graphs, vertex covering of      695
Edison, Thomas A.      18
Edmonds      671
Education stage of development      21
Efficiency of algorithms      404—407
Egervary      689
EKB      see "Explanatory knowledge base"
Elements (Euclid's)      20
Elements of a set      1
Elements of an argument      19—20
Empty set      4
Endpoints of a path      388
Enumeration of sets      367—368
Enumeration, ordering of strings      375
Enumeration, topological      428—432
Equality of generating functions      240
Equality of sets      4
Equivalence class      350—351
Equivalence class for integers      354—358
Equivalence class, canonical representative      356
Equivalence relations      340
Equivalence relations on integers      354—358
Equivalence relations on sets      11
Equivalence relations, defined      350
Equivalence relations, equivalence class      350—351
Equivalences of expressions      85—86
Equivalent propositional functions      38
Equivalent switching mechanisms      596
Equivocation, fallacy of      28
Eratosthenes (Sieve of)      224—225
ES      see "Expert systems"
Euclid      20
Euclid's Elements      20
Euclid's lemma      360
Euclidean algorithm      78 117
Euclidean plane      15
Euclidean prime      118
1 2 3 4 5 6 7
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå