Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Dorst L., Fontijne D., Mann S. — Geometric algebra for computer science
Dorst L., Fontijne D., Mann S. — Geometric algebra for computer science



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Geometric algebra for computer science

Àâòîðû: Dorst L., Fontijne D., Mann S.

Àííîòàöèÿ:

Within the last decade, Geometric Algebra (GA) has emerged as a powerful alternative to classical matrix algebra as a comprehensive conceptual language and computational system for computer science. This book will serve as a standard introduction and reference to the subject for students and experts alike. As a textbook, it provides a thorough grounding in the fundamentals of GA, with many illustrations, exercises and applications. Experts will delight in the refreshing perspective GA gives to every topic, large and small. -David Hestenes, Distinguished research Professor, Department of Physics, Arizona State University Geometric Algebra is becoming increasingly important in computer science. This book is a comprehensive introduction to Geometric Algebra with detailed descriptions of important applications. While requiring serious study, it has deep and powerful insights into GA's usage. It has excellent discussions of how to actually implement GA on the computer. -Dr. Alyn Rockwood, CTO, FreeDesign, Inc. Longmont, Colorado Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. Features Explains GA as a natural extension of linear algebra and conveys its significance for 3D programming of geometry in graphics, vision, and robotics. Systematically explores the concepts and techniques that are key to representing elementary objects and geometric operators using GA. Covers in detail the conformal model, a convenient way to implement 3D geometry using a 5D representation space. Presents effective approaches to making GA an integral part of your programming. Includes numerous drills and programming exercises helpful for both students and practitioners. Companion web site includes links to GAViewer, a program that will allow you to interact with many of the 3D figures in the book, and Gaigen 2, the platform for the instructive programming exercises that conclude each chapter. About the Authors Leo Dorst is Assistant Professor of Computer Science at the University of Amsterdam, where his research focuses on geometrical issues in robotics and computer vision. He earned M.Sc. and Ph.D. degrees from Delft University of Technology and received a NYIPLA Inventor of the Year award in 2005 for his work in robot path planning. Daniel Fontijne holds a Master's degree in artificial Intelligence and is a Ph.D. candidate in Computer Science at the University of Amsterdam. His main professional interests are computer graphics, motion capture, and computer vision. Stephen Mann is Associate Professor in the David R. Cheriton School of Computer Science at the University of Waterloo, where his research focuses on geometric modeling and computer graphics. He has a B.A. in Computer Science and Pure Mathematics from the University of California, Berkeley, and a Ph.D. in Computer Science and Engineering from the University of Washington. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2007

Êîëè÷åñòâî ñòðàíèö: 674

Äîáàâëåíà â êàòàëîã: 04.02.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Products, delta      536—538
Products, distributive over addition sandwiching      159 167 192
Products, dot      66 518 589—590
Products, grade-reducing      72
Products, linear      521—527
Products, metric      65—98
Products, nonlinear      529—540 553—554
Products, notation of      604
Products, scalar      65 67—71 196—197
Products, subspace      151—154
Products, summary      196—198
Products, versor      192—193
Programming      503—581
Programming, generative      543—544
Programming, geometry      15—17 199—202
Projection of optical center      348
Projection to subspaces      155—158
Projection, Euclidean      449—450 464
Projection, matrix      120
Projection, norm of contraction and      595—596
Projection, onto a line      103—104 107
Projection, orthogonal      105—106 120 326
Projection, perspective      325—326
Projection, subspace, as sandwiching      190
Projective geometry      499
Projective transformations      299 308—309 see
Projective transformations, affine transformation and      309
Projective transformations, defined      308
Projective transformations, Projective split      317
Proof of grade approach      599—601
Proper isometries      356
Pseudoscalar of conformal model      374
Pseudoscalar, defined      45
Pseudoscalar, Euclidean      375
Pseudoscalar, inverse      113
Qhull      429
QHull, computation with      429
QHull, passing points to      430
Quadvectors      37
Quaternionic fractals      209
Quaternions to matrix conversion      204—208
Quaternions, defined      181
Quaternions, unit      181—182
Radius squared      401 407
Radius squared of unit vectors      172 251
Radius squared of vectors      146—147
Ray tracing, algorithm      559—560
Ray tracing, basics      558—559
Ray tracing, process      573—580
Ray-tracing application      557—581
Ray-tracing application, evaluation      581
Ray-tracing application, mesh representation      560—565
Ray-tracing application, ray-model intersection      577—579
Ray-tracing application, reflection      579—580
Ray-tracing application, refraction      580
Ray-tracing application, scene modeling      566—572
Ray-tracing application, shading      580—581
Ray-tracing application, tracing rays      573—580
Rays, camera      575—576
Rays, classical representation      573
Rays, flat point-free vector representation      574—575
Rays, point-line representation      573
Rays, representation of      573—575
Rays, rotor representation      574
Rays, shadow      576—577
Rays, spawning      575—577
Rays, tangent vector representation      573—574
Reciprocal frames      89—90
Reciprocal frames, code      96
Reflection operators      167
Reflection(s)      105
Reflection(s) in dual hyperplane      168
Reflection(s) in dual subspace      188
Reflection(s) in lines      167 204
Reflection(s) in origin      471—472
Reflection(s) of subspaces      168—169 188—190
Reflection(s), geometric division      158—159
Reflection(s), planar      168—169 377—379
Reflection(s), ray-tracing application      579—580
Reflection(s), rotating mirror application      229
Reflection(s), spherical      466 468—469
Refraction      580
Rejection      156 157 158
Relative lengths      298—301
Relative orientation      296—298
Relative orientation, measure      298
Relative orientation, point and line in plane      297
Relative orientation, point and plane in space      297—298
Relative orientation, two points on a line      296—297
Relative orientation, two skew lines in space      298
Representation, direct      43
Representation, dual      83
Representation, factored      508
Reversion, basis blades      518—519
Reversion, defined      49—50 604
Right contraction      77 518
Rigid body motions      305 379—385 see
Rigid body motions, algebraic properties      380—381
Rigid body motions, characterization      305
Rigid body motions, defined      356
Rigid body motions, extrapolation      385
Rigid body motions, general      367
Rigid body motions, interpolation      385—386 395—396 493—494
Rigid body motions, logarithm      383—385 493
Rigid body motions, outermorphisms as matrices      306
Rigid body motions, rotations      380—381
Rigid body motions, scaled      472—475
Rigid body motions, screw      381—383
Rigid body motions, translations      380—381
Rockwood, A.      388
Rodrigues' formula      173—174
Rotation(s)      2
Rotation(s) in 2-D      177
Rotation(s) in 3-D      179—180
Rotation(s) in user interface      210—212
Rotation(s) of subspaces      169—176
Rotation(s), around origin      304
Rotation(s), as double reflection      170 180
Rotation(s), bivector angle      174
Rotation(s), circular      279
Rotation(s), composition      176—182
Rotation(s), determinant      107
Rotation(s), directions      248
Rotation(s), estimation      236—239
Rotation(s), frame      257—258
Rotation(s), general      305
Rotation(s), groups      254
Rotation(s), interpolation      259—260
Rotation(s), interpolation example      265—267
Rotation(s), line as axis      3 381
Rotation(s), matrix to rotor conversion      205—206
Rotation(s), object      569—570
Rotation(s), operators      14 170—188
Rotation(s), optimal      262
Rotation(s), oriented      176 255
Rotation(s), planar      104—105
Rotation(s), process      176
Rotation(s), result      176
Rotation(s), rotors perform      172—174
Rotation(s), sense of      174—176
Rotation(s), swapping law      472
Rotational velocities      86
Rotor-induced changes      217—218
Rotor-induced changes, multiple      218—219
Rotor-induced changes, perturbations      217
Rotors in code generator      201
Rotors in Euclidean space      182 187
Rotors in general metrics      587
Rotors in Minkowski space      187
Rotors of moved planes      368
Rotors of successive rotations      176
Rotors to matrix conversion      204—208
Rotors, 2-D      177—178
Rotors, 3-D      181
Rotors, 3-D, computing with      256—260
Rotors, action      172
Rotors, arcs, concatenation      180
Rotors, as double reflectors      170
Rotors, as even unit versors      195
Rotors, as exponentials of bivectors      185—187
Rotors, as spinors      196
Rotors, complex numbers as      177—178
Rotors, concatenating      566
Rotors, defined      171 195
Rotors, determining from frame rotation      257—258
Rotors, determining from rotation plane/angle      256—257
Rotors, equations      606
Rotors, estimating, optimally      236—239
Rotors, exponential representation      182—188
Rotors, interpolation      259—260 265—267
Rotors, inverse      183
Rotors, logarithm of      258—250
Rotors, noisy estimation      260
Rotors, normalization, computing      172
Rotors, oriented rotations      176
Rotors, perform rotations      172—174
Rotors, positive scaling      469—471
Rotors, principal logarithm      258 259
Rotors, pure, as exponentials of 2-blades      183—184
Rotors, quaternions as      181—182
Rotors, scaling, swapping order of      472—473
Rotors, transformation      194
Rotors, translation      365—366
Rotors, use of      199
Rounds      398—404
Rounds, as blades      410—415
Rounds, carriers      445
Rounds, center      468
Rounds, circle representation      412—413
Rounds, direct      400—402
Rounds, dual      398—400
Rounds, factorization of      446—447
Rounds, imaginary      400
Rounds, oriented      402—404
Rounds, point representation      410—411
Rounds, radius squared      407
Rounds, surround of      446
Rounds, tangents as intersections      404—409
Rounds, tangents of      445
Rounds, through point      401 461
Sandwiching      159 190—192 see
Scalar differentiation      221—224 see
Scalar differentiation of inner product      225
Scalar differentiation of multivector-valued function      221
Scalar differentiation, applied to constructions      222
Scalar differentiation, time and      222
Scalar multiplication      522
Scalar product      65 see
Scalar product, defined      67
Scalar product, linear transformation of      108
Scalar product, summary      196—197
Scalars in geometric product      148
Scalars, as 0-blades      37—39
Scalars, interpreted geometrically      37—39
Scalars, multiplication      38 148
Scaled rigid body motions      472—475 see
Scaled rigid body motions, logarithm of      473—475
Scaled rigid body motions, negatively      474
Scaled rigid body motions, positively      472—473
Scaling      469—475
Scaling, homogeneous factor      489
Scaling, negative      471
Scaling, positive rotor      469—471
Scaling, rigid body motions      472—475
Scaling, uniform      103
scenes      see also "Ray-tracing application"
Scenes, modeling      566—572
Scenes, transformation      566—572
Screw motions      381—383 385
Screw motions, defined      381
Screw motions, illustrated      382
Screw motions, parameters      383
Seashell example      494—495
Shading computations      580—581
Shading computations, defined      558
Shading computations, outcome      560
Shading computations, reflection approximation      580
Shading computations, steps      580—581
Shadow rays      560 576—577
Simple, volume of      44 427
Sine of multivectors, defined      531
Sine of multivectors, optimization      554
Singular value decomposition (SVD)      118 239 434—436
Singularities in vector fields      60—63
Skew lines      295—296 298 333
Slerp interpolation      260
Software, implementation      16—17 503—581
Space, bivector      30—31
Space, Euclidean      142
Space, Grassmann      48
Space, Minkowski      358 586
Space, projective vector      23—35
Space, representation, of conformal model      256—259
Space, representation, of homogeneous model      272—273
Space, representation, of vector space model      248
Spheres      see also "Rounds"
Spheres, creating      432
Spheres, direct      401—402
Spheres, dual      362—363 398 401
Spheres, fitting to points      417—420 431—436
Spheres, general vector representation      361—364
Spheres, inner product distance of      417—418
Spheres, intersection      405
Spheres, oriented      402
Spheres, plunge of      440 441 442
Spheres, through points      404
Spherical geometry      251—254 482—483
Spherical geometry, defined      482
Spherical geometry, illustrated      482
Spherical geometry, translations      482—483
Spherical geometry, versors      482—483
Spherical inversion, applications      467 468—469 484
Spherical inversion, as conformal transformation      466
Spherical inversion, center of a round      468
Spherical inversion, defined      465
Spherical inversion, reflection in spheres/circles      468—469
Spherical reflection      466 468—469
Spherical triangle      179—180 252—254
Spinors, defined      195
Spinors, rotors as      196
Squared norms, of subspace      67—68
STEP      46
Stereo vision      see also "Imaging by multiple cameras"
Stereo vision, cameras and      340—342
Stereo vision, epipolar constriant      341
Stereo vision, essential matrix      342
Stereo vision, line-based      342—346
Stereo vision, trifocal tensor      345
Stereographic projection      389
Storage      491 542 548 549
Structure preservation in analyzing/constructing elements      369
Structure preservation, covariant preservation of      367—370
Structure preservation, versor product      368
Subspace algebra      12 23—140 199
Subspace products retrieved      151—154 597—601
Subspace products retrieved from symmetry      152—153
Subspace products retrieved, as selected grades      154
Subspace products retrieved, contractions from geometric product      598—599
Subspace products retrieved, exercise      161—162
Subspace products retrieved, outer product from geometric product      597—598
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå