Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Dorst L., Fontijne D., Mann S. — Geometric algebra for computer science
Dorst L., Fontijne D., Mann S. — Geometric algebra for computer science



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Geometric algebra for computer science

Àâòîðû: Dorst L., Fontijne D., Mann S.

Àííîòàöèÿ:

Within the last decade, Geometric Algebra (GA) has emerged as a powerful alternative to classical matrix algebra as a comprehensive conceptual language and computational system for computer science. This book will serve as a standard introduction and reference to the subject for students and experts alike. As a textbook, it provides a thorough grounding in the fundamentals of GA, with many illustrations, exercises and applications. Experts will delight in the refreshing perspective GA gives to every topic, large and small. -David Hestenes, Distinguished research Professor, Department of Physics, Arizona State University Geometric Algebra is becoming increasingly important in computer science. This book is a comprehensive introduction to Geometric Algebra with detailed descriptions of important applications. While requiring serious study, it has deep and powerful insights into GA's usage. It has excellent discussions of how to actually implement GA on the computer. -Dr. Alyn Rockwood, CTO, FreeDesign, Inc. Longmont, Colorado Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. Features Explains GA as a natural extension of linear algebra and conveys its significance for 3D programming of geometry in graphics, vision, and robotics. Systematically explores the concepts and techniques that are key to representing elementary objects and geometric operators using GA. Covers in detail the conformal model, a convenient way to implement 3D geometry using a 5D representation space. Presents effective approaches to making GA an integral part of your programming. Includes numerous drills and programming exercises helpful for both students and practitioners. Companion web site includes links to GAViewer, a program that will allow you to interact with many of the 3D figures in the book, and Gaigen 2, the platform for the instructive programming exercises that conclude each chapter. About the Authors Leo Dorst is Assistant Professor of Computer Science at the University of Amsterdam, where his research focuses on geometrical issues in robotics and computer vision. He earned M.Sc. and Ph.D. degrees from Delft University of Technology and received a NYIPLA Inventor of the Year award in 2005 for his work in robot path planning. Daniel Fontijne holds a Master's degree in artificial Intelligence and is a Ph.D. candidate in Computer Science at the University of Amsterdam. His main professional interests are computer graphics, motion capture, and computer vision. Stephen Mann is Associate Professor in the David R. Cheriton School of Computer Science at the University of Waterloo, where his research focuses on geometric modeling and computer graphics. He has a B.A. in Computer Science and Pure Mathematics from the University of California, Berkeley, and a Ph.D. in Computer Science and Engineering from the University of Washington. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2007

Êîëè÷åñòâî ñòðàíèö: 674

Äîáàâëåíà â êàòàëîã: 04.02.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Coordinate form in Gaigen2      55—57
Coordinate form, elements      330—332
Coordinate form, elements, combining      332—333
Coordinate form, hyperplanes      331
Coordinate form, intersecting lines      333
Coordinate form, line and plane      333
Coordinate form, lines      331—332
Coordinate form, plane through point and line      332
Coordinate form, Pluecker      330—333
Coordinate form, point and plane      332
Coordinate form, points      330—331
Coordinate form, skew lines      333
Coordinate-free parameterized constructions      309—312
coordinates      55—57
Coordinates, as components of projections      56
Coordinates, barycentric      316
Coordinates, compression      548—549
Coordinates, constant      552
Cosine law of angles      254
Cosine of multivectors, defined      531
Cosine of multivectors, optimization      554
Covariant preservation of structure      367—370 497—498
Cramer's rule      40
Cross product      86—89
Cross product, implementing      94—95
Cross product, incorporated      87—89
Cross product, linear transformation of      112
Cross product, uses      86—87
Cross ratio      298—301
Cross ratio of points      300
Cross ratio, defined      299
Cross ratio, projective      300 319
Crystallography      254—256
Crystallography, example illustration      267
Crystallography, implementation      267—268
Decomposition      155—158
Decomposition, multivectors      504
Decomposition, polar      239
Decomposition, singular value (SVD)      239
Degenerate metrics      66 585—586
Delaunay triangulation      417
Delaunay triangulation, drawing result      431
Delaunay triangulation, example      428—431
Delaunay triangulation, QHull computation      429—430
Delaunay triangulation, real-time updates      429
Delta product of blades      537 538
Delta product of two sets      536
Derivative, direction1      224—230
det(f)      106
Determinants of linear transformation      106—107
Determinants of orthogonal transformation      111 193
Determinants, composition rule      107
Determinants, defined      106
Differential planar reflections      228—230 386—388
Differentiation      7 213—241
Differentiation, directional      224—230
Differentiation, multivector      235—239
Differentiation, parametric      221
Differentiation, scalar      221—224
Differentiation, vector      230—235
Direct representation      43
Direct rounds      400—402 see
Direct rounds, defined      403
Direct rounds, real      403
Direct rounds, sphere      401—402
Direct tangents      405
Directional differentation      224—230
Directional differentation in coordinate direction      230
Directional differentation of spherical projection      241
Directional differentation of vector inversion      227
Directional differentation, application      228—230
Directional differentation, identity function      225
Directional differentation, illustrated      227
Directional differentation, powers of the norm      227
Directional differentation, scalar derivative of inverse      235
Directional differentation, table of elementary results      225—227
Directions, affine mapping and      307
Directions, algebra of      247—270 498
Directions, angular relationships between      251—254
Directions, attitude      248
Directions, blade      408—409
Directions, conformal model      376
Directions, convenient abuse      263—264
Directions, defined      248
Directions, directly represented, conformal model      376
Directions, dual, conformal model      376
Directions, k-dimensional      248
Directions, locations as      263—264
Directions, orientation      248
Directions, reflecting directions      248
Directions, translation-invariant      303
Directions, weight      248
Distance between points      357 392—393
Distance ratio      298—301
Distributivity, geometric product for vectors      144
Distributivity, geometric product of multivectors      148
Dot product      589—590
Dot product in deriving metric products      518
Dot product, defined      66 589
Dual circles      399
Dual representation      83
Dual representation, homogeneous model      288—291
Dual representation, hyperplane      290
Dual representation, transforming      111
Dual rounds      398—400 see
Dual rounds, circles      399
Dual rounds, imaginary      400
Dual rounds, real      399—400
Dual rounds, spheres      398
Dual tangents      406
Dual translation formula      304
Duality of vectors and bivectors      82
Duality of vectors in 2-D      81
Duality, orthogonal complement and      80—82
Duality, relationships      82—83
Dualization in geometric algebra      374
Dualization of hyperplane      168
Dualization of mapping      80
Dualization, defined      80
Dualization, Euclidean metric and      81
Dualization, origin blade      375
Dupin cycloid      486
e, $\bar{e}$      361
Edge, length      457—458
Edge, lines      455—456
Edge, point      456—457
Efficiency of geometric algebra      199—201
Efficiency, generative programming      543—544
Efficiency, implementation issues      541—543
Efficiency, meet, join      139 539—540
Efficiency, raytracer benchmark      554—556
Efficiency, specializing structure for      541—556
Epipolar constraint      341
Epipolar constraint, defined      341
Epipolar constraint, illustrated      342
Equations      603—607
Equations in geometric algebra      605
Equations, conformal model      607
Equations, exponential, cosine, sine of blades      606
Equations, homogeneous model      606
Equations, linear transformation      605
Equations, notation of products and operators      604
Equations, sign change per grade      604
Equations, working with rotors      606
Essential matrix      342
Euclid's elements, drawing exercise      431—432
Euclidean geometry      498
Euclidean geometry, constructions in      437—464
Euclidean geometry, operational model      358
Euclidean geometry, primitives      397—436
Euclidean incidence      438—444
Euclidean metric      66
Euclidean metric, diagonal metric factors      516
Euclidean metric, dualization and      81
Euclidean nuggets      444—449
Euclidean points      357
Euclidean projections      449—450 464
Euclidean space      185
Euclidean space, computing      367
Euclidean space, origin and      356
Euclidean space, point at infinity      356
Euclidean space, points      356
Euclidean space, rotors in      187 197
Euclidean transformations      356 364—370
Euclidean transformations, as versors      364—370
Euclidean transformations, general rigid body motions      367
Euclidean transformations, invariance of properties      369—370
Euclidean transformations, rotations in origin      366—367
Euclidean transformations, translations      365—366
Even versors      193
Exponential of multivectors, defined      531
Exponential of multivectors, optimization      554
External camera calibration      260—363
External camera calibration, example      268—270
External camera calibration, example illustration      268
External camera calibration, parameter estimation      261
External camera calibration, problem      261
Extrapolation, rigid body motions      385
Factored representations      508
Factorization of dual round      446
Factorization of rounds      446—447
Factorization, blade      533—535 554
Factorization, outer, intersection through      127—128
Factorization, preservation      102
Finite lines      278—282
Finite lines, moment      279
Finite lines, representation      279
Finite lines, specification      279
Finite points      274—275
Finite points, adding      276
Finite points, intersection      293—294
Fitting sphere to points      417—420
Fitting sphere to points, code      435
Fitting sphere to points, cost function      419
Fitting sphere to points, example      434—436
Fitting sphere to points, inner product distance of spheres      417—418
Flat point, defined      374
Flat point, location formula      428
Flat point, visualization      443
Flats, affine combination of      448
Flats, carriers      445
Flats, conformal model      370—376
Flats, conformal model illustration      373
Flats, direct representation (conformal)      370—372
Flats, direct representation (homogeneous)      286—88
Flats, dual representation      288—291 374—376
Flats, generalization      372
Flats, grades      303
Flats, imaginary      400
Flats, interpretation      371—372
Flats, k-flats      285—286
Flats, offset      286
Flats, parameters of      285—286 291
Flats, plunge of      442—444
Flats, standardization      371
Flats, tangents of      445
Flats, transformation of      335
Flats, translation of      303 372
Forward kinematics      420—422 see
Forward kinematics, defined      420
Forward kinematics, robot parameterization      422
Forward kinematics, run-time algorithm      422
Forward kinematics, Unimation Puma 560 arm      421
Frame rotation      257—258
GA Sandbox      19 53—57
Gaigen2      53—57 541—556
GAViewer      19
Generative programming      543—544
Generative programming, defined      543
Geometric algebra of conformal model      357
Geometric algebra of homogeneous model      273
Geometric algebra, alternative implementation approaches      506—508
Geometric algebra, basic operations for basis blades      504—505 511—519
Geometric algebra, Clifford algebra versus      198—199
Geometric algebra, defined      1 198
Geometric algebra, efficient implementation      505 541—556
Geometric algebra, equations      605
Geometric algebra, factored representations      508
Geometric algebra, fundamental product      141—165
Geometric algebra, implementation issues      503—509
Geometric algebra, implementation levels      504—505
Geometric algebra, irreducible matrix implementations      507—508
Geometric algebra, isomorphic matrix approaches      506—507
Geometric algebra, overview      7—15
Geometric algebra, product structure of      196—201
Geometric algebra, reference implementation      505
Geometric calculus      15 213—241
Geometric differentiation      213—241
Geometric division      154—159
Geometric division, decomposition      155—158
Geometric division, inverses of blades      155
Geometric division, reflection      158—159
Geometric product      142—153
Geometric product for vectors on a basis      144—145
Geometric product of basis blades      516—517
Geometric product of concatenated transformations      191
Geometric product, algebraic definition      148—149
Geometric product, division      154—159
Geometric product, grades and      150—151
Geometric product, invertible      142—143
Geometric product, linearity      144 148
Geometric product, matrix computation for multivector      523—526
Geometric product, mixed grade      151
Geometric product, properties      143—144
Geometric product, scalar squares      148
Geometric product, scalars      148
Geometric product, subspace products from      151—154 597—560
Geometric product, summary      196—198
Geometric product, symmetry for vectors      143
Geometries of planar triangles      249—251
Geometries, algebras for      497—499
Geometries, characterization      497
Geometries, conformal      498—499
Geometries, contact      499
Geometries, Euclidean      355—464 498
Geometries, homogeneous model      245 272—354
Geometries, hyperbolic      480—481
Geometries, image      499
Geometries, modeling      245—246
Geometries, non-Euclidean      480—483 486—487
Geometries, operational models      497—499
Geometries, projective      499
Geometries, spherical      251—254 482—483
GLUT models      486
Grade operator      48
grade()      47
Graded algebra      48
Grades in geometric product      150—151
Grades, basis blades      518
Grades, defined      44
Grades, involution      49—50
Grades, raising property      49
Grades, subspace products as      154 599—601
Gram — Schmidt orthogonalization      162—165
Gram — Schmidt orthogonalization, code      164
Gram — Schmidt orthogonalization, illustrated      163
Grassmann algebra      199
Grassmann algebra for 3-D vector space      48
Grassmann algebra for n-dimensional space      48
Grassmann algebra of multivectors      47—49
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå