Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Dorst L., Fontijne D., Mann S. — Geometric algebra for computer science
Dorst L., Fontijne D., Mann S. — Geometric algebra for computer science



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Geometric algebra for computer science

Àâòîðû: Dorst L., Fontijne D., Mann S.

Àííîòàöèÿ:

Within the last decade, Geometric Algebra (GA) has emerged as a powerful alternative to classical matrix algebra as a comprehensive conceptual language and computational system for computer science. This book will serve as a standard introduction and reference to the subject for students and experts alike. As a textbook, it provides a thorough grounding in the fundamentals of GA, with many illustrations, exercises and applications. Experts will delight in the refreshing perspective GA gives to every topic, large and small. -David Hestenes, Distinguished research Professor, Department of Physics, Arizona State University Geometric Algebra is becoming increasingly important in computer science. This book is a comprehensive introduction to Geometric Algebra with detailed descriptions of important applications. While requiring serious study, it has deep and powerful insights into GA's usage. It has excellent discussions of how to actually implement GA on the computer. -Dr. Alyn Rockwood, CTO, FreeDesign, Inc. Longmont, Colorado Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. Features Explains GA as a natural extension of linear algebra and conveys its significance for 3D programming of geometry in graphics, vision, and robotics. Systematically explores the concepts and techniques that are key to representing elementary objects and geometric operators using GA. Covers in detail the conformal model, a convenient way to implement 3D geometry using a 5D representation space. Presents effective approaches to making GA an integral part of your programming. Includes numerous drills and programming exercises helpful for both students and practitioners. Companion web site includes links to GAViewer, a program that will allow you to interact with many of the 3D figures in the book, and Gaigen 2, the platform for the instructive programming exercises that conclude each chapter. About the Authors Leo Dorst is Assistant Professor of Computer Science at the University of Amsterdam, where his research focuses on geometrical issues in robotics and computer vision. He earned M.Sc. and Ph.D. degrees from Delft University of Technology and received a NYIPLA Inventor of the Year award in 2005 for his work in robot path planning. Daniel Fontijne holds a Master's degree in artificial Intelligence and is a Ph.D. candidate in Computer Science at the University of Amsterdam. His main professional interests are computer graphics, motion capture, and computer vision. Stephen Mann is Associate Professor in the David R. Cheriton School of Computer Science at the University of Waterloo, where his research focuses on geometric modeling and computer graphics. He has a B.A. in Computer Science and Pure Mathematics from the University of California, Berkeley, and a Ph.D. in Computer Science and Engineering from the University of Washington. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2007

Êîëè÷åñòâî ñòðàíèö: 674

Äîáàâëåíà â êàòàëîã: 04.02.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Meet, linear transformation of      133—135
Meet, nonmetric product      135
Meet, plunge relationship      440—442
Meet, preservation under linear transformation      135
Meet, programming example      138—139
Meet, quantitative properties      132—133
Meet, using      128—130
Meet, Venn diagram      537
Meshes, bounding sphere computation      563—564
Meshes, BSP tree construction      564—565
Meshes, faces      562—563
Meshes, representing      560—565
Meshes, triangular      560
Meshes, vertices      561—562
Meshes, vertices with tangent 2-blades      562
Metric matrix      419 515
Metric matrix, diagonal      523
Metric matrix, eigenvectors/eigenvalues      517
Metric products in homogeneous model      312—315
Metric products of basis blades      518
Metric products of subspaces      65—98
Metric products, Hestenes      518 590
Metric products, linear transformations of      108—112
Metric space, basis      89
Metric space, defined      66
Metrics      585—587
Metrics, (non-) orthogonal      515—517
Metrics, conformal model      357—358 390—392
Metrics, defined      542
Metrics, degenerate      66 585
Metrics, Euclidean      66 516
Metrics, general      586 587
Metrics, hard-coding      545
Metrics, homogeneous representation space      272
Metrics, non-Euclidean      165 586
Metrics, nondegenerate      66
Metrics, rotors in      587
Midplane      401 455
Minkowski space      185 586
Minkowski space, defined      358
Minkowski space, rotors in      187
Modeling geometries      245—246
Moebius transformations      479—480
moment      281 291 329 343
Motion(s), constructing elements through      305—306
Motion(s), euclidean      307 365—367
Motion(s), hyperbolic      481
Motion(s), matrices of, in Pluecker coordinates      334—335
Motion(s), rigid body      305 306 356 365—367
Motion(s), screw      381—183
Motor algebra      318—319
Mouse input      566—567
Multiplication, matrix      523
Multiplication, scalar      522
Multiplicative composition      180
Multiplicative principle      199
Multivector class, coordinate compression      548—549
Multivector class, example      549
Multivector class, implementation of      547—549
Multivector differentiation      235—239 see
Multivector differentiation, application      236—239
Multivector differentiation, defined      236
Multivector differentiation, elementary results      237
Multivectors, classification      532—533 554
Multivectors, cosine of      531 554
Multivectors, decomposition      504
Multivectors, defined      48 542
Multivectors, exponential of      531 554
Multivectors, general versus specialized      54
Multivectors, geometric product of      147—151
Multivectors, Grassmann algebra of      47—49
Multivectors, inverse      530—531 554
Multivectors, notational conventions      47
Multivectors, outer product      527
Multivectors, sine of      531 554
Multivectors, vs. blades      46 198
Negative scaling      471 see
Negative scaling, detection      490
Negative scaling, handling      490
Negative scaling, TRS versor representation      491
Negatively scaled rigid body motion      474
Noisy rotor estimation      260
Non-Euclidean geometries      480—483 see
Non-Euclidean geometries, hyperbolic      480—481
Non-Euclidean geometries, spherical      482—483
Nonlinear functions, implementation      529—540 553—554
Nonmetric orthogonal projection      314—315
Norm of blades      67—68
Norm of subspaces      67—68
Normal vectors      453 see
Normal vectors, bivector characterization      88
Normal vectors, defined      86
Normal vectors, transforming      112 122—123
Notation in homogeneous model      278
Notation of elements      47
Notation of products      604
Null blades      587
Null vectors      587 see
Null vectors in conformal model      359 410
Null vectors, defined      66 587
Null vectors, parabola of      413
Null vectors, points as      359—361
o, $\infty$      359
Objects, as operators      14—15 188—191
Objects, construction of      13
Objects, orbiting camera around      572
objects, rotating      569—570
Objects, scaling      568
Objects, transformation as      190—191
Objects, translating      568—569
Odd versors      193
Offset flats      286 302 330
Offset lines      293
Offset subspaces      136 285
Offset subspaces, defining in base space      288
Offset subspaces, loading transformations into (homogeneous model)      348—349
Offset subspaces, matrices, in column-major order      489—490
Offset subspaces, matrices, transforming primitives with      349—351
Offset subspaces, modelview matrix      324
Offset subspaces, Pluecker coordinates      330—332
Offset subspaces, representation      280 372—374
Offset subspaces, visualization      559
OpenCV library      436
OpenGL, loading transformations into (conformal model)      393—395
Operational models for geometries      497—499
Operational models, defined      195
Operators on subspaces      141
Operators, bindings inGaigen2      55
operators, boolean      511 513
Operators, conformal      465—495
Operators, differentiation      239
Operators, grade      48
Operators, objects as      14—15 188—191
Operators, point groups      255
Operators, ratios of vectors as      146—147
Operators, subspaces as      188—191
Operators, versor of composition of      193
Optical motion capture      351—354
Optimization, blade factorization      554
Optimization, exponential, sine, and cosine of multivectors      554
Optimization, functions      550—553
Optimization, inverse of multivectors      554
Optimization, inverse of versors (and blades)      554
Optimization, meet and join of blades      554
Optimization, multivector classification      554
Optimization, nonlinear function      553—554
Orientation of line      26
Orientation of plane      28
Orientation, blades      408—409
Orientation, defined      43
Orientation, directions      248
Orientation, front-/back-facing polygons      57 59
Orientation, relative      296—298
Orientation, volume      35
Oriented      see also "Lines"
Oriented area of triangles      251
Oriented area, elements      27—33
Oriented rotations      255
Oriented rounds      402—404 see
Oriented rounds, circle      402
Oriented rounds, sphere      402
Oriented subspaces      see also "Subspaces"
Oriented subspaces, direct representation      43
Oriented subspaces, dual representation      83
Oriented subspaces, reflections in      189
Oriented subspaces, spanning      23—64
Oriented, line elements      25—27
Orthogonal complement      82
Orthogonal matrix      110
Orthogonal projection      120—122 155
Orthogonal projection in conformal model      450
Orthogonal projection in homogeneous model      315
Orthogonal projection of subspaces      83—86
Orthogonal projection, nonmetric      314—315
Orthogonal projection, programing example      120
Orthogonal transformations      99 110—111 see
Orthogonal transformations, as versor products      193—195
Orthogonal transformations, as versors      13 167—212
Orthogonal transformations, composition of      200
Orthogonal transformations, contraction      110—111
Orthogonal transformations, defined      110 167—212
Orthogonal transformations, determinant      111
Orthogonal transformations, geometrical changes by      214—215
Orthogonal transformations, optimal      201
Orthogonal transformations, representation      13 167—212
Orthogonal transformations, universal      12—14
Orthogonalization      162—165
Orthonormalization      93—94
Outer products      23—64 50 see
Outer products from geometric product      152—154 597—598
Outer products of basis blades      513—515
Outer products of multivectors      527
Outer products of spheres, zero norm      418
Outer products, anticommutativity      31
Outer products, antisymmetry      38 284
Outer products, associativity      35—36
Outer products, defined      29 50
Outer products, geometric interpretations      10
Outer products, properties summary      50—51
Outer products, vector differentiation of      233
Outermorphisms      101—108
Outermorphisms, algebraic properties      101—102
Outermorphisms, implementation      552—553
Outermorphisms, inverses of      113—114
Outermorphisms, matrices      115—117 270
Outermorphisms, matrix representation      114—117 122 349
Outermorphisms, orthogonal projection      105—106
Outermorphisms, planar rotation      104—105
Outermorphisms, projection onto a line      103—104
Outermorphisms, reflections      105
Outermorphisms, rigid body motion as      306
Outermorphisms, transformation law      111
Outermorphisms, uniform scaling      103
Paraboloids      410—411
Parallel lines      294
Parallelness      42
Parametric differentiation      221—239
Perspective projection      325—326
Perturbations      217
Pinhole cameras      337—339
Pinhole cameras, illustrated      337
Pinhole cameras, projection formula      337—339 347—348 484
Planar reflection      168—169 377—379 see
Planar reflection, conformal model      378—379
Planar reflection, differential      386—388
Planar reflection, homogeneous model      378
Planar reflection, linear algebra      377—378
Planar reflection, vector space model      378
Planar rotation      104—105
Planar triangles      249—251
Planes, area element      28 30
Planes, as 3-blades in homogeneous model      283—285
Planes, as reflectors in oriented subspaces      189
Planes, directed      42
Planes, dual      361—364
Planes, Euclidean circles intersection as      414—415
Planes, homogeneous      27—28
Planes, intersecting      86—87 130
Planes, intersecting lines in      41
Planes, properties      27—28
Planes, two lines in      292—294
Plate trick      174
Pluecker coordinates of 3-D line      329
Pluecker coordinates, common computations      330
Pluecker coordinates, defined      328
Pluecker coordinates, homogeneous      328—336
Pluecker coordinates, line representation      328—330 343
Pluecker coordinates, matrices of motions      334—335
Plunge of dual plane      441
Plunge of dual sphere      441
Plunge of flats      442—444
Plunge of line      443
Plunge of three spheres      440
Plunge of two spheres      442
Plunge, as real circle      440
Plunge, defined      440
Plunge, meet relationship      440—442
Plunge, programming example      462
Point at infinity      356
Point at origin      272 356
Point groups, defined      254
Point groups, generating vectors      255
Point groups, operators      255
Point pairs, decomposition      427
Point pairs, dual      399
Point pairs, inversion in      485
Point pairs, oriented      402
Points in Pluecker coordinate form      330—331
Points, addition of      276—278
Points, affine combination of      307—308 447—449
Points, as null vectors      359—361
Points, as vectors      274—278
Points, attitude      38 275—276
Points, conic      308
Points, creating      323—324 434
Points, cross ratio of      300
Points, distance between      392—393
Points, edge      456—457
Points, Euclidean space      356
Points, finite      274—275
Points, fitting sphere to      417—420
Points, improper      282
Points, infinite      275—276 356
Points, orientation      38
Points, reflection      4 107
Points, support      281 284
Points, unit      274
Points, weight      38 275
Points, working with      320—322
Position vectors      451 454
Positive scaling rotor      469—471
Primitives, conformal, intersections and      432—434
Primitives, Euclidean geometry      397—436
Primitives, intersecting      322—324
Primitives, transforming with OpenGL matrices      349—351
Products      see also "Geometric product" "Inner "Outer
Products, bilinear over addition      197
Products, commutator      215—217
Products, cross      86—89
Products, decomposition of      198
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå