Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Chaikin P., Lubensky T. — Principles of condensed matter physics
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Principles of condensed matter physics
Àâòîðû: Chaikin P., Lubensky T.
Àííîòàöèÿ: Now in paperback, this book provides an overview of the physics of condensed matter systems. Assuming a familiarity with the basics of quantum mechanics and statistical mechanics, the book establishes a general framework for describing condensed phases of matter based on symmetries and conservation laws. After surveying the structure and properties of materials with different symmetries, it explores the role of spatial dimensionality and microscopic interactions in determining the nature of phase transitions. Particular attention is given to critical phenomena and renormalization group methods. The properties of liquids, liquid crystals, quasicrystals, crystalline solids, magnetically ordered systems and amorphous solids are investigated in terms of their symmetry, generalized rigidity, hydrodynamics and topological defect structure. In addition to serving as a course text, this book is an essential reference for students and researchers in physics, applied physics, chemistry, materials science and engineering, who are interested in modern condensed matter physics.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: 1
Ãîä èçäàíèÿ: 1995
Êîëè÷åñòâî ñòðàíèö: 699
Äîáàâëåíà â êàòàëîã: 06.12.2013
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
"Problems" 103—7 209—12 283—7 347—52 411—6 492—4 585—9 656—61
-sum rule 372 670
, crystal structure 175—82
346
183
-dimensional orthogonal group 228
-vector elastic energy 298
-vector models 140 152—4 228—30 267 298
and incommensurate crystal 79
model see models
symmetry 137 289
model 288 503;
order parameter space 501
symmetry 138
model 202; see models
symmetry 140 235 298 343 344 682
symmetry, and nematic liquid crystals, elasticity 298—306
symmetry 289; see symmetry
-model 288 289 495 502 506 524 544—5 684
-model, elasticity 289—90
-model, longitudinal and transverse response 575—7
-model, shear modulus 555
-model, vortex energy 526—30
-model, vortex unbinding 555
-symmetry 137
symmetry 137
symmetry 289 684
-expansion 263—276 286
solvent 94 96 682
Abelian group 505
Abrikosov vortex lattice 561 571 662
Absolute solid-on solid (ASOS) model 644 662
Acoustic phonons, harmonic lattice 367—8; see sound modes
Adatoms 78 601 662
Airy stress function 535 589
Amphiphilic molecule 68 71 662
Amplitude ratios 236—7
Angstrom 17
Anharmonicities see nonlinearities
Anharmonicities, nonlinear model 341
Anisotropic — Next — Nearest — Neighbor Ising (ANNNI) model 186—8 662
Anisotropy, anisotropic lattice 54
Anisotropy, anisotropic molecules 58 62
Anisotropy, cubic 267
Anisotropy, energy 177
Anisotropy, field 177 662
Anisotropy, quadratic 269
ANNNI see Anisotropic — Next — Nearest — Neighbor Ising model
Antibonding orbital 22
Antiferromagnet, antiferromagnetic phase 87 176 346
Antiferromagnet, conjugate field 136
Antiferromagnet, Heisenberg model 435
Antiferromagnet, hydrodynamics 438—9
Antiferromagnet, model G 437
Antiferromagnet, order parameter (staggered magnetization) 136 177 435
Antiferromagnet, phase transitions 135
Antiferromagnet, spin waves 438
Argon 3 7—8 178
ASOS see absolute solid-on solid model
Atomic form factor 31 662
Bands in metals 25
Basin of attraction 245 253—4 662
Basis, crystalline solids 43 48 662
BCC see body-centered cubic lattice
Bend 299 301 662
Bend, expulsion from smectic phase 312
Bernal model 40 662
Biaxial nematic 16 135—7 662
Binding energy 18
Bipartite lattice 135—7 662
Block-spin variable 238—40 662
Blume — Emergy — Griffiths model 179
Body-centered cubic (BCC) lattice 53—6 87 135 189—94 515—17 662
Body-centered cubic (BCC) lattice, defects 515—17
Bohr magneton 25
Boltzmann constant 11 216 376
Bond-angle (bond orientational) order 58 66 328—9 534 556 663
Bonding orbital 22 663
Bose particles 123
Bragg scattering 47—9 663
Bragg scattering, and Debye — Waller factor 49 322
Bragg scattering, and long-range order 61 136
Bragg scattering, and quasi-long-range order 61 313 325
Bragg scattering, cylinder, TGB phase 568
Bragg scattering, law 29—33 663
Bragg scattering, peaks 48 75—6 663
Bragg scattering, peaks, and adsorbed monolayers 325
Bragg scattering, peaks, and antiferromagnetic order 88 136
Bragg scattering, peaks, and incommensurate systems 80—1
Bragg scattering, peaks, and quasicrystals 82
Bragg scattering, peaks, satellite 31
Bragg scattering, sheets 75
Bragg scattering, spot 10 77
Bragg — Williams theory 146—151 663
Bravais lattice 43 50—5 663
Breakdown of mean-field theory 208 214—17 225
Brillouin scattering 452 458 663
Brillouin zone 46 47 100 136 256 258—9 663
Broken symmetry 2 10 14 132—4 433 663
Broken symmetry, and defects in systems with discrete symmetry 590
Broken symmetry, and elasticity 288
Broken symmetry, and Goldstone mode 432 434
Broken symmetry, and topological defects 495
Broken symmetry, broken continuous symmetry 10 12 14 137—8
Broken symmetry, broken discrete symmetry 135—137
Broken symmetry, helium 460—4
Broken symmetry, magnetic order 85—90
Broken symmetry, phase 10—15 419
Broken symmetry, variables 417—419
Broken symmetry, variables, hydrodynamic variable 427
Brownian motion 375 663
Buckling instability 315
bulk modulus 320 663;
Burgers vector 663
Burgers vector, dislocation 508—9 513 534
Burgers vector, lattice 514
c-director 64 506
Cahn — Hilliard model (model B) 448 468 664
Callen — Welton theorem 387 664;
canonical ensemble 119
Canted spin order 87
Cantor set 604 664
Causal 355 664
Charge-density response function 205
chemical potential 110 117
Chiral liquid crystal 561; see cholesteric liquid crystal
Chiral molecule 60—1 664
Cholesteric (chiral) liquid crystal 58—61 87 299 561 569 665
Cholesterol nonanoate 64
CI see commensurate-incommensurate
Classical fluid 452—53; see response functions
Classical fluid, and cross-sections 405—6
Classical fluid, and fluctuation-dissipation theorem 387 397
Classical fluid, and inelastic scattering 404—8
Classical fluid, Brownian particle 383—4
Classical fluid, density-density correlation function 354 372 374 405
Classical fluid, dynamic scaling 469
Classical fluid, rigid rotor 430
Classical fluid, self-diffusion (problem) 416
Classical plasma 205
Climb 521 664
Clock model 139 664
Close-packing 9 52 56—7 664; HCP and
Closure 44
Coarse graining process 217—19 239 664
Coarsening 483 490
Codimension 499 664
coexistence 117 159 161 170 178 180 664
Coherence length 231; see correlation length
Coherent and incoherent scattering 404—5 664
Coherent cross-section 404—6
Columnar discotic phase 68 664
Columnar discotic phase, homework problem 103
Columnar discotic phase, lyotropic systems 71
Commensurate see incommensurate
Commensurate, ANNNI model 187
Commensurate, Frenkel — Kontorowa model 602 604
Commensurate, lattice 78 665
Commensurate, magnetic wave vector 77—82 89
Commensurate, overlayer 254
Commensurate-incommensurate transition 77—82 89 603—7 640—3
Commensurate-incommensurate transition, and the Frenkel — Kontorowa model 601—20
Commensurate-incommensurate transition, dislocations 640—3
Commutation relation 120 218 434 461
Completeness relation 98
Compressibility 5 114 116 162 328 451 488 664
Compressibility, in adsorbed overlayers 639
Compton scattering 88 665
Conjugate field 134 139
Conjugate variables 111 665
Conservation laws 2 418
Conservation laws, and hydroydnamic modes 418
Conservation laws, and model B 468
Conservation laws, and model C 469
Conservation laws, angular momentum 420
Conservation laws, density 369 418
Conservation laws, density, and diffusion 369
Conservation laws, energy 420 438 440—41
Conservation laws, mass 441 445 453
Conservation laws, momentum 441
Conservation laws, momentum, and model H 476
Conservation laws, spin and models E & F 476
Conservation laws, spin and models G & J 477
Conservative dislocation motion 520 665
Constitutive relation 418 425 665
Continuous symmetries, groups 135 137—9 157 288 495 665
Continuous symmetries, groups, hydrodynamics and broken 418
Continuous transition 13 15 665;
Conventional unit cell 51 53 665
Cooperative diffusion 376—8
Core energy of a topological defect 526 665
Corrections to scaling 241 665
Correlation functions, dynamic, chapter 7 353—83
Correlation functions, static 123—132 226 231 243 260 383
Correlation functions, static, and compressibility 126
Correlation functions, static, and long-range order, QLRO, and disorder 295
Correlation functions, static, and susceptibility 131
Correlation functions, static, density-density 34—36
Correlation functions, static, direct pair correlation function 126
Correlation functions, static, displacements in a smectic liquid crystal 313
Correlation functions, static, displacements in an isotropic solid 322 324 533
Correlation functions, static, mean-field order parameter 157
Correlation functions, static, nematic director 306
Correlation functions, static, pair correlation function 36 40
Correlation functions, static, pair distribution function 36
Correlation functions, static, spin-spin 130
Correlation functions, static, spin-spin, in KT transition 577
Correlation functions, static, static scaling of 252
Correlation functions, static, static structure factor 36 42
Correlation functions, static, static structure factor, of a crystal 48
Correlation functions, static, structure function 32 62 66
Correlation functions, static, structure function, 1D crystal 323
Correlation functions, static, structure function, 2D crystal 325
Correlation functions, static, structure function, Smectic- liquid crystal 313
Correlation functions, static, transverse in systems with broken continuous symmetry 292
correlation length 154—5 213 214 228 231 244 262 341 665
Correlation length exponent 155 231 228 262 266 269 665
Coulomb attraction 18 19
Coulomb gas 546 584 588—9
Covering surface 511 665
creep 12 665
Critical density 5 159 665
Critical dimensions, dynamic 471
Critical dimensions, lower 15 227 295 313 322
Critical dimensions, upper 15 213 226 263 283 285—6
Critical endpoint 180 665
Critical exponents 230 665
Critical exponents, (dynamic scaling) 469—71
Critical exponents, (specific heat) 231 233—4 237
Critical exponents, (order parameter) 153 167 174 231 237
Critical exponents, 154 174
Critical exponents, (gap exponent) 324 341
Critical exponents, (critical point) 231 232 237 268 286
Critical exponents, (order paremeter in 2
Critical exponents, , hexatic QLRO 558
Critical exponents, (smectic liquid crystal) 313 640
Critical exponents, (2D crystal) 325
Critical exponents, and (polymerized membranes) 431
Critical exponents, (susceptibility) 153 174 227 231 237 285
Critical exponents, 273
Critical exponents, (external field scaling) 324 340
Critical exponents, (thermal) 240
Critical exponents, (correlation length) 155 174 231 237 240 251 262 266 269 286 284
Critical exponents, (field scaling) 238
Critical exponents, (energy density scaling) 240
Critical exponents, (crossover) 235 270
Critical exponents, percolation from one-state Potts model 286
Critical exponents, tables of 231 237
Critical exponents, universality, and scaling, field theory 230—7
Critical exponents, Yang — Lee edge 286
Critical isobar 160
Critical isochore 159 162—5
Critical isotherm 160
Critical nucleus 480
Critical opalescence 4 5 165 665
Critical point 4 5 118 159 162—5 666
Critical pressure 162
Critical slowing down 4 465 666
Crossover exponent 235 269 270
Crossover functions 216 228 270—3
Crystal and liquid phases 78
Crystalline solids 43—5
Crystalline solids, Bragg scattering 47—9
Crystalline solids, close packed structures 56—7
Crystalline solids, disclinations 517—8
Crystalline solids, dislocations 513—17
Crystalline solids, growth 522
Crystalline solids, hydrodynamics 459
Crystalline solids, order parameter and transition to 187—98
Crystalline solids, periodic functions 46—7
Crystalline solids, reciprocal lattice 45—6
Crystalline solids, space groups 57—8
Crystalline solids, strength 518—22
Crystalline solids, three-dimensional Bravais lattices 53—6
Crystalline solids, topological defects 506—26
Crystalline solids, two-dimensional Bravais lattices 50—3
Crystallographic point group 51 666
Cubatic 328 666
Cubic anisotropy 267 666
Cubic fixed point 268 666
Cubic lattice 52—7
Curie spin susceptibility 243 666
Curvature 623—5 666
Curvature, and elasticity of smectic liquid crystals 311
Curvature, mean 625 676
Cutoff 221 226 256 294 666
D xy-model) 296
Dangerous irrelevant variables 273—5 666
de Gennes energy 566
De Gennes free energy for the smectic- phase 566
de Gennes — Taupin length 628 630 667
Debye — H ckel screening length 204 206 558 666
Debye — Waller factor 49 294 322 407 666
Decimation 245—8 667
Delocalization energy 25
Density functional theory 195—8
Density operator 34—8
Destructive interference 29 667
Devil’s staircase 603—5 667
dielectric constant 20 206—7 546 551
Ðåêëàìà