Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Hille E. — Methods in classical and functional analysis
Hille E. — Methods in classical and functional analysis



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Methods in classical and functional analysis

Автор: Hille E.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1972

Количество страниц: 494

Добавлена в каталог: 05.05.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Matrix, symmetric      24
Matrix, transpose      24
Matrix, unit      21
Matrix, unitary      18
Maximum principle      256 272
Mean square convergence      158
Mean value(s)      437-474
Mean value(s), $A$-average      437-451
Mean value(s), $p$th power      95 140 447
Mean value(s), arithmetic      95 152 428
Mean value(s), arithmetico-geometric      451
Mean value(s), functional equations of      439-449
Mean value(s), geometric      439 447
Mean value(s), H$\ddot{o}$lder      450
Mean value(s), harmonic      439 447
Mean value(s), property      255
Measurability, $A$-, $\mu$-      113-115 236 468
Measurability, Lebesgue      119-123
Measurability, Lebesgue, of functions      119-123
Measurability, Lebesgue, of sets      112 119
Measurability, Lebesgue, radial      390
Measure, Carath$\acute{e}$odory      115
Measure, inner      124 135
Measure, Lebesgue      112-119
Measure, outer      114
Measure, space      113
Measure, unit      114
Metzler, R. C.      420 423 425
Michal, A. D.      264
Mikusi$\acute{n}$ski, J.      158
Miller antiderivations      372
Miller uniqueness theorem      433
Miller, J. B.      169 188 379
Minkowski $l_{p}$-norm      40 88
Minkowski convexity      380 395 411
Minkowski distance      40
Minkowski gauge function      40 317 319
Minkowski geometry of numbc/s      40
Minkowski inequality      90 139
Minkowski semi-norm      40
Minkowski support function      395
Minkowski, H.      40
Minors      7
Minors, principal      8
Mitrinovic, D. S.      379
Mittag — Leffler, G., partial fraction series      181
Modulus of continuity for $C[a, b]$      91
Modulus of continuity for $L_{p}[a, b]$      145 149
Monotone Convergence Theorem      126 244
Morera theorem      258
Multiplication operator      426
Multiplication theorem      376 424
Multiplication, element-wise      19 64-65 80 86
Multiplication, scalar      2 8 19 52 56 63
Multiplicative inequalities      376-379
Na$\breve{\imath}$mark, M. A.      304
Nagumo postulates      285
Nagumo resolvent expansion      285 326
Nagumo uniqueness theorem      366 373
Nagumo, M. Nagumo inequality      366 373
Narici, L.      50 84
Neighborhood, epsilon      54
Neighborhood, Hausdorff      218
Neighborhood, strong, weak      224
Neumann series      177
Neumann, C.      177
Neumann, J., von      341 361
Newman, M. H. A.      84
Newton — Waring formula      473
Newton, Sir Isaac, potential      458
Ng uniqueness theorem      430-433
Ng, C. T.      436 437
Nilpotency      25
Norm      2 9 25 40 41 55 57 306
Norm, differentiability of      334
Norm, of $l_{p}$      88
Norm, sup      87 97
Null space      57 306
Nullity      17
Operational calculus      296-304
Operational calculus, in Hilbert space      341-353
Operator, adjoint      44 77 322-325 333
Operator, antiderivation      372
Operator, bounded      57 165 305 310
Operator, Bourlet      424
Operator, Cayley      335 359
Operator, closed      307 310-316
Operator, commutator      296
Operator, conjugation      24
Operator, contraction      165-169
Operator, convolution      138 156
Operator, derivation      424
Operator, Dirichlet      360
Operator, hermitian      44 77 333 341-361
Operator, identity      65
Operator, inverse      14 58 65 165 322-325
Operator, involution      24 137 334
Operator, Jordan      296
Operator, multiplication      426
Operator, nilpotent      82 328
Operator, normal      78 334 338-341
Operator, order preserving      164 199
Operator, positive      199 345-348
Operator, projection      24 79 332 343 350-354
Operator, quasi-nilpotent      82 326
Operator, self-adjoint      77
Operator, shift      167
Operator, substitution      426
Operator, unitary      78
Order (ing), partial      165-165
Order (ing), preserving      164 199
Order (ing), total      162
Order (ing), under inclusion      162
Ordinate sets      123
Oscillation reducing      439
Ostrowski, A.      419 436
P$\acute{o}$lya indicator      391
P$\acute{o}$lya transfinite diameter      456 471
P$\acute{o}$lya, G.      394 411 456 468
Parallelogram law      12 68 332
Parallelogram law, extended      12 69 453
Parseval, M. A., Parseval identity      72 151
Parts of Hermitian operator      78
Parts of real-valued function      121
Peano postulates      85
Peano, G.      85
Pecking order      329
Perlis, S., circle product      279
Perp      74
Perspectivity      430
Pettis, B. J.      248
Phillips, R. S.      248 275 304 330 385 410
Phragm$\acute{e}$n growth indicator      191 411
Phragm$\acute{e}$n, E.      263
Picard successive approximations      194-199
Picard transform      169 172
Picard two-point theorem      433 436
Picard, E.      169 194
Pl$\ddot{u}$cker, J.      396
Poincar$\acute{e}$, H.      184
Point      1 9 51
Point coordinates      395
Point spectrum      183 328
Poisson, S. D., transform      172
Polar form      43 77 333
Polar plane      43
Polar solids      396
Pole of $\mathfrak{X}$-holomorphic function      255
Pole of meromorphic function      183
Pole of polar convex solids      396
Pole of polar plane      43
Polynomial, $\check{C}$eby$\check{s}$ev      459 464
Polynomial, abstract      264 274
Polynomial, Bernstein      101
Polynomial, Fekete      471
Polynomial, positive      344
Porter, M. B.      258
Positivity      198-199 343-348
Postulates, A-averages      437-439
Postulates, addition      52
Postulates, distance      40 54
Postulates, equality      52
Postulates, multiplication      80
Postulates, norm      39 55
Postulates, Peano      85
Postulates, scalar multiplication      52
Potential, $K$      470
Potential, logarithmic      456 465 472
Potential, M. Riesz      474
Potential, Newtonian      457 465 469
Potential, theories      467-474
Power set      113
Power, abstract      264
Power, means      140
Principle of absolute integrability      240
Principle of maximum      256-257 272
Principle of repeated averages      438
Principle of uniform boundedness      212-217
Product, box      395
Product, cartesian      56
Product, circle      279
Product, cross      8
Product, dot      4
Product, inner      4 9 67
Product, scalar      8 52
Product, space      56
Product, vector      8
Projection      24 66 79 326 332
Property, absolute integrability      129
Property, mean value      255
Pythagoras      68
Pythagoras theorem      69 332
Quadratic form      42 77 333
Quadric surface      42
Quasi-inverse      279
Quasi-nilpotent      82
Quotient algebra      292
Radfmacher, H.      411
Radius, spectral      83 278
Radon, J.      469
RANGE      14 58 305
Range, numerical      335-341
Rank      17
Residual spectrum      328 337
Residue class      292
Resolution of the identity      34 50 333 343
Resolution, spectral      326
Resolvent      28-36 65-66 83-84 281-290
Resolvent, spectral representation of      32 50 342 359
Resolvent-equations      36 281-290 413
Resolvent-kernel      180-184
Reverse, revertible      279
Riccati, J. F. Count, Riccati equations      289 290
Rickart, C. E.      304
Riemann — Stieltjes integral      103
Riemann — Stieltjes integral, abstract      230-236
Riesz functionals on $C[a, b]$      104
Riesz on $L_{p}(a, b)$      146
Riesz positive operation theorem      345 346
Riesz potential      474
Riesz splitting theorem      349-350
Riesz — Fischer theorem      156
Riesz, F.      55 249 322 342
Riesz, M.      464
Rijnierse, P. J.      416 436
Robin constant      469
Robin, G.      469
Rosenbaum, R., subadditive functions      385 411
Rota, G. — C., Rota — Landau — Kallman theorem      167 168
Runge, C.      258
Scalar multiplication of linear transformations      19 63
Scalar multiplication of matrices      19
Scalar multiplication of sequences      86
Scalar multiplication of vectors      2 8 52
Schaeffer, H. H.      187 330
Schmidt characteristic values      183
Schmidt — Gram-orthogonalization process      3-7 12 69
Schmidt, E.      4
Schr$\ddot{o}$der, E., functional equation      426 436 464
Schwartz, J.      248 304 330 361
Schwarz lemma      257
Schwarz — Bounyakovsky-inequality      139
Schwarz, H. A.      139
Sebastiao e Silva, J.      264
Semi-group, infinitesimal generator of      167
Semi-group, neutral element of      165
Semi-group, of operators      165 167 423
Semi-group, Poisson      172
Semi-module      386-400
Semi-module, angular      386
SEQUENCE      54
Sequence, Cauchy      5
Sequence, diagonal      22
Sequence, spaces      85-96
Sequence, subadditive      278 385
Series, Fourier, abstract      70-73
Series, Fourier, trigonometric      149-158
Series, gap = lacunary      157
Series, Taylor      255
Set, A-measurable      113
Set, closed, open      54
Set, compact      160
Set, conditionally, sequentially      161
Set, convex      13
Set, dense, nowhere dense      54
Set, difference      218 296
Set, dissolvent      279
Set, infimum      163
Set, lim, inf, sup      119
Set, measurable      113
Set, ordinate      123
Set, power      113
Set, product      296
Set, resolvent      65 83 96 109 277 325
Set, spectral      326
Set, sub      13
Set, sum      387
Set, supremum      163
Set, void      112
Set-function      114 253 456 459 468
simplex      452
Simplicial problem      452
Singular points      375
Singular points, rate of growth at      374 415-417
Singular points, regular, irregular      376
Sinusoid      395
Sobczyk, A., — Bohnenblust theorem      319
Space, $X$ equals $BV$      103 107 111
Space, $X$ equals $C[a, b]$      96 101
Space, $X$ equals $C^{k}[a, b]$      105
Space, $X$ equals $C^{n}$      8-13
Space, $X$ equals $C^{\infty}$      105
Space, $X$ equals $R^{n}$      9
Space, $X$ equals $\mathfrak{M}^{n}$      18-28
Space, $X$ equals $\mathfrak{M}^{n}C[a, b]$      104
Space, $X$ equals Lebesgue      112-156 136-149
Space, $X$ equals sequence      85-96
Space, abstract      51
Space, adjoint = dual      60 218
Space, Banach      51-56
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте