Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Elberly D.H., Shoemake  K. — Game Physics 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå    Íàøëè îïå÷àòêó? 
 
                                
                                    Íàçâàíèå:   Game PhysicsÀâòîðû:   Elberly D.H., Shoemake  K. Àííîòàöèÿ:  Game Physics is an introduction to the ideas and techniques needed to create physically realistic 3D graphic environments. As a companion volume to Dave Eberly's industry standard 3D Game Engine Design, Game Physics shares a similar practical approach and format. Dave includes simulations to introduce the key problems involved and then gradually reveals the mathematical and physical concepts needed to solve them. He then describes all the algorithmic foundations and uses code examples and working source code to show how they are implemented, culminating in a large collection of physical simulations. This book tackles the complex, challenging issues that other books avoid, including Lagrangian dynamics, rigid body dynamics, impulse methods, resting contact, linear complementarity problems, deformable bodies, mass-spring systems, friction, numerical solution of differential equations, numerical stability and its relationship to physical stability, and Verlet integration methods. Dave even describes when real physics isn't necessary—and hacked physics will do.
ßçûê:  Ðóáðèêà:  Ôèçèêà /Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö ed2k:   ed2k stats Ãîä èçäàíèÿ:  2004Êîëè÷åñòâî ñòðàíèö:  776Äîáàâëåíà â êàòàëîã:  19.03.2006Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Kinetic energy, thin rod (rough plane) 147 Kinetic energy, time-varying frames 115 Kinetic energy, two particles (rough plane) 144 Kinetic energy, two-body problem 137 Kinetic norm 362 Kink 700 Knot vectors 175—176 see Knot vectors, control point modification and 183 Knot vectors, nonuniform 175 Knot vectors, open, nonuniform 176 Knot vectors, open, uniform 175 Knot vectors, periodic 175 Knot vectors, rows of 177 Lagrange multipliers 692 Lagrange multipliers, defined 716 Lagrange multipliers, method of 715—716 717 Lagrangian dynamics 7 100—152 see Lagrangian dynamics, constrained motion 278—280 Lagrangian dynamics, defined 87 101 Lagrangian dynamics, frictional forces and 87 222 Lagrangian dynamics, kinetic energy and 14 Lagrangian equations of motion 87 101 see Lagrangian equations of motion for constraint variable 133 Lagrangian equations of motion for constraints of interest 118 Lagrangian equations of motion for continuum of mass 121—132 Lagrangian equations of motion, ball at top of frictionless hill example 109 Lagrangian equations of motion, ball constrained on frictionless table example 107 Lagrangian equations of motion, bent pipe physical system example 131 Lagrangian equations of motion, conservative force 133 Lagrangian equations of motion, constraining force 103 Lagrangian equations of motion, diving board example 134 Lagrangian equations of motion, double—pendulum problem 136 Lagrangian equations of motion, external force 103 Lagrangian equations of motion, flat board (rough plane) 150 Lagrangian equations of motion, for particle constrained on a surface 106 Lagrangian equations of motion, for particle constrained to a curve 103 Lagrangian equations of motion, for particle systems 118—121 Lagrangian equations of motion, frictionless metal chute example 111 Lagrangian equations of motion, interpretation of 117—118 Lagrangian equations of motion, masses aligned vertically example 120 Lagrangian equations of motion, multiple particles (rough plane) 146 Lagrangian equations of motion, pulley and mass system example 127 Lagrangian equations of motion, simple pendulum friction example 140 Lagrangian equations of motion, simple pendulum problem 104 Lagrangian equations of motion, single particle on rough plane 143 Lagrangian equations of motion, thin rod (rough plane) 148 Lagrangian equations of motion, triangle pendulum 125 Lagrangian equations of motion, two particles (rough plane) 145 Lagrangian equations of motion, two-body problem 138 Lagrangian function 133 426 Lamina 14 Law of Cosines 602 LCP applications 427—436 see LCP applications, contact forces 436 LCP applications, distance calculations 427—436 LDU decomposition method 578 582 583 Leap frog method 481—483 Leap frog method, advantages 483 Leap frog method, application to modal equation 502 Leap frog method, applied to simple pendulum problem 499 Leap frog method, characteristic polynomial 502 Leap frog method, defined 481 Leap frog method, first position approximation 482 Leap frog method, implicit assumption 482 Leap frog method, iterate generation pseudocode 498 Leap frog method, region of stability 502 Leap frog method, velocity 482 484 Least-squares problem 621 Left inverse 622—623 Lemke — Howson algorithm 391 408—413 Lemke — Howson algorithm, complementary variable cannot leave dictionary 418 Lemke — Howson algorithm, defined 408 Lemke — Howson algorithm, example 409—413 Lemke — Howson algorithm, first phase 408 416 Lemke — Howson algorithm, numerical implementation of 415 Lemke — Howson algorithm, problems of zero constants 412 Lemke — Howson algorithm, second phase 408 416 Level set extraction 206—208 Levi—Civita permutation tensor 686 Limit notation 694 Limits 694—696 see Limits, approach of 694 696 Limits, continuous variables and 696 Limits, defined 691 Limits, multivariate calculus 704—705 Limits, of a sequence 696—697 Limits, univariate calculus 694—696 Line integrals, computation by reduction to 68—73 Line integrals, planar integral conversion to 69 Line segments, as function of y 683 Line segments, contact sets as 254 316 Line segments, end points 683 Line segments, length of 681—682 Line segments, vector-valued function 254 Linear algebra 545—668 Linear algebra, advanced topics 634—668 Linear algebra, applications 661—668 Linear algebra, determinants 634—646 Linear algebra, eigendecomposition 652—655 Linear algebra, eigenvalues and eigenvectors 646—651 Linear algebra, fundamental theorem of 616—620 Linear algebra, matrices 566—583 Linear algebra, number systems 545—548 Linear algebra, S + N decomposition 655—661 Linear algebra, systems of linear equations 548—566 Linear algebra, vector spaces 583—633 Linear combinations 593—594 Linear combinations, defined 593 Linear combinations, example 593 Linear combinations, finite 593 Linear complementarity problem (LCP) 10 264 269 407—418 Linear complementarity problem (LCP), complementary variables and 416—418 Linear complementarity problem (LCP), conversion to 409 411 Linear complementarity problem (LCP), defined 391 407 Linear complementarity problem (LCP), formulation 392 Linear complementarity problem (LCP), Lemke — Howson algorithm and 391 408—413 Linear complementarity problem (LCP), online summary 408 Linear complementarity problem (LCP), overview 391—392 Linear complementarity problem (LCP), quantities in 407—408 Linear complementarity problem (LCP), simplex method solution 408 Linear complementarity problem (LCP), software requirement 265 Linear complementarity problem (LCP), solution 410 Linear complementarity problem (LCP), solver 264 Linear complementarity problem (LCP), variations 362 Linear complementarity problem (LCP), zero constant terms and 413—416 Linear difference equations 730—733 see Linear difference equations, defined 730 Linear difference equations, first-order 730—731 Linear difference equations, homogeneous 730 Linear difference equations, second-order 731—733 Linear differential equations 446—450 Linear differential equations, nth-order homogeneous 446 Linear differential equations, solution 450 Linear differential equations, systems of 446—150 Linear equations, defined 548 Linear equations, nonhomogeneous 730 Linear equations, nonsquare systems of 558—559 Linear equations, re-creating 567 Linear equations, systems of 548—566 Linear independence 595—601 Linear inequality constraints 392 Linear interpolation, over a tetrahedron 680 Linear interpolation, over a triangle 679 Linear momentum 42 225 Linear momentum, change in 246 Linear momentum, conservation of 42 Linear momentum, continuum of mass 42 Linear momentum, defined 42 Linear momentum, discontinuity in 245 Linear momentum, simultaneous updates 262 Linear programming (LP) 10 392—407 Linear programming (LP), defined 392 Linear programming (LP), dual problem 404—407 Linear programming (LP), general problem 396—104 Linear programming (LP), problems 2 Linear programming (LP), solution by pairwise intersections 394—396 Linear programming (LP), two-dimensional example 392—394 Linear systems 548—566 Linear systems, geometry 559—562 Linear systems, iterative methods for solving 565—566 Linear systems, nonsquare 558—559 Linear systems, sparse 565 Linear transformations 525—526 624—633 Linear transformations of sum of vectors 624 Linear transformations, applied to basis vectors 629 Linear transformations, bilinear 525 608 Linear transformations, composition of 633 Linear transformations, defined 526 624 Linear transformations, examples 625—626 Linear transformations, expansion 628 631 Linear transformations, matrix notation and 538 Linear transformations, on weighted sums 526 Linear transformations, with respect to chosen bases 629 Linear transformations, with respect to two different bases 631 Linear velocity 26 Linear velocity, constant 311—334 343—346 Linear velocity, convex polygons 311 Linear velocity, impulse equation 260 Linear velocity, instantaneous update 264 Linear velocity, postimpulse 246 249 Linear velocity, preimpulse 246 Linear velocity, update 254 255 Linearity 525—526 Linearity, weighted sums mutation and 535 Linearity, “distributed law” 526 Linearly dependent sets see also Vectors Linearly dependent sets, cardinality 599 Linearly dependent sets, defined 506 Linearly dependent sets, example 596 Linearly dependent sets, inserting vectors into 598—601 Linearly dependent sets, removing vectors from 598 600 Linearly independent sets see also Vectors Linearly independent sets, cardinality 599 Linearly independent sets, defined 596 Linearly independent sets, examples 597 Linearly independent sets, obtaining 598 Linearly independent sets, retaining 598—601 Lines, coincident 559 Lines, horizontal parallel 695 Lines, nonparallel 559 Lines, parallel 559 Lines, secant 698 Lines, tangent 698 708 Local control 175 181 Local minimum 421 Local truncation error 488 Lower echelon matrices 570 Lower triangular matrices 571 LU decomposition 577 577—583 LU decomposition, approximate solution 581—583 LU decomposition, defined 577 LU decomposition, exact solution 580—581 LU decomposition, LDU 578 582 583 L’Hopital’s Rule 701 Magnitude of forces, product of 79—80 Magnitude, computing 247 Magnitude, impulsive forces 251 264 Magnitude, normal component 259 Magnitude, vectors 583 Magnitude, velocity 258 263 Marching Cubes algorithm 206—208 Marching Cubes algorithm, 2D images and 209 Marching Cubes algorithm, defined 206 Marching Cubes algorithm, sign analysis 207 Marching Cubes algorithm, sign combinations 207 Marching Cubes algorithm, table lookup 208 Marching Cubes algorithm, triangle mesh 215 Marching Cubes algorithm, undesirable consequences 207 Marching Cubes algorithm, voxel analysis 206 Marching Squares 209 Mass matrix 59 Mass(es), ball 106 107 Mass(es), bead 104 Mass(es), center of 41 44—56 Mass(es), constrained 116 Mass(es), continuous 42 Mass(es), continuous, in one dimension 45—46 Mass(es), continuous, in three dimensions 52—56 Mass(es), continuous, in two dimensions 48—51 Mass(es), continuum of 14 42 60 Mass(es), curve 14 15 55—56 Mass(es), defined 31 Mass(es), density 121 125 Mass(es), discrete, in one dimension 44—45 Mass(es), discrete, in three dimensions 52 Mass(es), discrete, in two dimensions 46—48 Mass(es), displacement 102 Mass(es), infinitesimal 45 48 50 121 Mass(es), integral computation 53 Mass(es), inverse 249 Mass(es), measurement 31 Mass(es), motion, over time 100 Mass(es), one-dimensional array of 164—166 Mass(es), particle 93 Mass(es), pendulum 100 Mass(es), projectile 80 Mass(es), solid polyhedron 66—79 Mass(es), surface 14 15 53—55 Mass(es), three-dimensional array of 170—171 Mass(es), torque 44—45 Mass(es), total, of body 122 224 Mass(es), total, of system 46 47 53 54 Mass(es), total, of wire 50 55 Mass(es), two-dimensional array of 166—170 Mass(es), volume 14 15 52—53 Mass-spring systems 164—173 Mass-spring systems, arbitrary configurations 171—173 Mass-spring systems, one-dimensional array of masses 164—166 Mass-spring systems, three-dimensional array of masses 170—171 Mass-spring systems, two-dimensional array of masses 166—169 Mass-spring systems, volume mass representation 170 Masses aligned vertically example 119—121 Masses aligned vertically example, defined 119 Masses aligned vertically example, force 119 Masses aligned vertically example, illustrated 119 Masses aligned vertically example, kinetic energy 120 Masses aligned vertically example, Lagrangian equations of motion 120 Mathematica 74 76 Mathematical Programming (MP) 10 418—427 Mathematical programming (MP), convex 420 Mathematical programming (MP), defined 392 418 Mathematical programming (MP), dual problem 426 Mathematical programming (MP), goal 418 Mathematical programming (MP), notation 419 Mathematical programming (MP), objective function 418 Mathematical programming (MP), primal problem 426 Mathematical programming (MP), problem categories 420 Mathematical programming (MP), quadratic 420 Matrices 566—583 Matrices of cofactors 642 Matrices of minors 642 Matrices, augmented 555 557 563 566 Matrices, block 619 675 Matrices, change of basis 631 633 Matrices, column 555 Matrices, concept 566—567 Matrices, decomposition of 662 Matrices, diagonal 448 449 569 Matrices, diagonal entries 569 Matrices, elementary row 570—572 
                            
                     
                  
			Ðåêëàìà