Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Elberly D.H., Shoemake K. — Game Physics
Elberly D.H., Shoemake  K. — Game Physics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Game Physics

Авторы: Elberly D.H., Shoemake K.

Аннотация:

Game Physics is an introduction to the ideas and techniques needed to create physically realistic 3D graphic environments. As a companion volume to Dave Eberly's industry standard 3D Game Engine Design, Game Physics shares a similar practical approach and format. Dave includes simulations to introduce the key problems involved and then gradually reveals the mathematical and physical concepts needed to solve them. He then describes all the algorithmic foundations and uses code examples and working source code to show how they are implemented, culminating in a large collection of physical simulations. This book tackles the complex, challenging issues that other books avoid, including Lagrangian dynamics, rigid body dynamics, impulse methods, resting contact, linear complementarity problems, deformable bodies, mass-spring systems, friction, numerical solution of differential equations, numerical stability and its relationship to physical stability, and Verlet integration methods. Dave even describes when real physics isn't necessary—and hacked physics will do.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2004

Количество страниц: 776

Добавлена в каталог: 19.03.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Stability, asymptotic      453 454
Stability, explicit Euler’s method      500
Stability, for constant-coefficient linear systems      451—453
Stability, for general autonomous systems      453—455
Stability, for single-step methods      488—490
Stability, implicit Euler’s method      500
Stability, leap frog method      502
Stability, numerical      487—502
Stability, physical      487
Stability, results      451
Stability, Runge — Kutta fourth-order method      501
Stability, solution      450
Stack variables      238
Standard Euclidean basis      601
State arrays, copying data from      238
State arrays, copying of data and      234
State arrays, design      236
State arrays, global      231 238
State arrays, size      235
State variables, copying      230
State variables, initialization      229
State variables, projection of      223
State variables, rigid body      239
State vectors of entire system      227
State vectors, as list of pairs      224
State vectors, defined      223
State vectors, n blocks of values      227
State vectors, updating      223
Static friction      36
Stationary objects      286—310
Stationary objects, convex polygons      286—298
Stationary objects, convex polyhedra      298—310
Steiner points      208
Stiff equations      503—506
Stokes’s theorem      15
strain      162
Stress, defined      162
Stress, ratio to strain      162
Stress, volume      163
Strong duality principle      407 426
Subsets, span of      618
Subspaces, affine      675—676
Subspaces, analysis      613
Subspaces, defined      595
Subspaces, four fundamental      620
Subspaces, one-dimensional      621
Subspaces, orthogonal      613—615 620
Subspaces, parallel      675
Subspaces, projection      621
Subspaces, span of subsets as      618
Subspaces, subsets as      595
Subspaces, two-dimensional      621 675
Subtraction      545
Subtraction, quaternions      513
Subtraction, vector      585
Superscript asterisk      514
Surface integrals, decomposition      67—68
Surface integrals, volume integral conversion to      67
Surface mass      14 15 53—55 see
Surface mass, center of mass      53—55
Surface mass, defined      14
Surface mass, equations of motion for      121—132
Surface mass, in space      15
Surface mass, integration      15
Surface(s), B-spline      187—188
Surface(s), built from curves      190—197
Surface(s), closed      192
Surface(s), cylinder      192—193
Surface(s), generalized cylinder      193—194
Surface(s), motion on      104—112
Surface(s), NURBS      188—190
Surface(s), parametric      163 173
Surface(s), revolution      195—196
Surface(s), tube      197 198 199
Swapping      688
Sweep algorithm      354—355
Sweep algorithm, defined      354
Sweep algorithm, illustrated      355
SWIFT      364
Symmetric matrices      448 570 623
Symmetric matrices, defined      569
Symmetric matrices, eigendecomposition for      652—655
Symmetric matrices, eigenvalues of      655
Symmetric matrices, example      569
Symmetric matrices, real-valued      652
Systems of difference equations      736—738
Systems of difference equations, defined      737
Systems of difference equations, homogeneous solution      738
Systems of difference equations, uses      737
Table-based mesh selection      214—215
Tableau of coefficients and constants      399
Tableau, defined      399
Tableau, rows      402
Tableau, updated      400 401
Tangent line      708
Tangent line, defined      698
Tangent line, direction      708
Tangent plane      708
Tangential acceleration      17 26
Taylor expansions, for acceleration      483
Taylor expansions, for velocity      483
Taylor polynomials      458 465 664 665
Taylor series      720
Taylor series, approach      438
Taylor series, for exponential function      446
Taylor’s Theorem      454 458 467 478 481
Taylor’s Theorem, application of      466
Taylor’s Theorem, extension to bivariate functions      465
Taylor’s Theorem, with second-degree polynomial      461
Temporal coherence      350 358
Terminal dictionary      409 411
Test-intersection queries      344 see
Test-intersection queries, defined      222
Test-intersection queries, total cost      349 350
Testlntersection function      289 291—292 298 316 326 328—329 339—341 344—346
Tetrahedrons, barycentric coordinates      679—680
Tetrahedrons, edges      305
Tetrahedrons, illustrated      304
Tetrahedrons, spherical dual of      304
Tetrahedrons, triangle base      685
Tetrahedrons, triangle slices      684 685
Tetrahedrons, vertices      304
Tetrahedrons, volume of      684—685 688
Thin rod (rough plane)      147—148
Thin rod (rough plane), defined      147
Thin rod (rough plane), frictional force      147
Thin rod (rough plane), generalized force      147—148
Thin rod (rough plane), kinetic energy      147
Thin rod (rough plane), Lagrangian equations of motion      148
Third-order Runge — Kutta methods      468
Three-dimensional array (masses)      170—171
Three-dimensional array (masses), defined      170
Three-dimensional array (masses), equation of motion      170—171
Three-dimensional array (masses), illustrated      170
Three-dimensional Perlin noise      375
Time, as continuous variable      281
Time, coherence      284
Time, collision, predicting      283
Time, culling      348
Time, intervals, constancy over      343
Time, last, of contact      283
Time, object at      282
Time, step      343
Time-varying frames      114—116
Time-varying frames, equations of motion      115
Time-varying frames, generalized force      116
Time-varying frames, kinetic energy      115
Time-varying frames, relevant derivatives      116
Time-varying frames, total time derivative      115
Time-varying quaternions, derivatives      543—544
Topics, this book      6—11
torque      37—39 see
Torque, applied      227 228
Torque, computing      238
Torque, defined      37
Torque, driving      225
Torque, due to internal forces      38
Torque, equation      60
Torque, evaluation      276
Torque, external      267
Torque, impulsive      246
Torque, infinitesimal      49
Torque, mass      44—45
Torque, nonzero vector      40
Torque, quantity      37
Torque, resolution      268
Torque, total      39 41
Torsion      22
Total derivatives      114
Transfer of axes      66
transpositions      638 639
Trapezoids, approximation of area by      462—463
Triangle faces      73 74—75
Triangle faces, counterclockwise ordered      74
Triangle faces, parametrization of      74
Triangle pendulum      124—125
Triangle pendulum, defined      124
Triangle pendulum, illustrated      124
Triangle pendulum, Lagrangian equation of motion      125
Triangle pendulum, mass density      125
Triangle slices      684 685
Triangles, area of      682—684 687
Triangles, barycentric coordinates      678—679
Triangles, base length      682
Triangles, direct parametrization of      74—75
Triangles, extraction      208
Triangles, generation      215
Triangles, height      682
Triangles, large number issue      208
Triangles, linear interpolation over      679
Triangles, mesh      190 214 215
Triangles, moving, edge-to-edge contact      321
Triangles, removal in edge mesh      217
Tridiagonal matrices      581
Triple pendulum problem      137
Triple scalar product      609—610
Triple scalar product, defined      609
Triple scalar product, signed volume      609 610
Triple vector product      610—613
Triple vector product, defined      610
Triple vector product, illustrated      611
Tube surfaces      197 see
Tube surfaces, closed      198
Tube surfaces, construction      197
Tube surfaces, defined      197
Tube surfaces, wriggling snake modeled as      199
Two particles (rough plane)      143—145
Two particles (rough plane), defined      143
Two particles (rough plane), generalized force      144—145
Two particles (rough plane), illustrated      143
Two particles (rough plane), kinetic energy      144
Two particles (rough plane), Lagrangian equations of motion      145
Two-body problem      137—139 see
Two-body problem, center of mass      137
Two-body problem, defined      137
Two-body problem, gravitational force      137
Two-body problem, kinetic energy      137
Two-body problem, Lagrangian equations of motion      138
Two-dimensional array (masses)      166—169 see
Two-dimensional array (masses), equations of motion      168
Two-dimensional array (masses), illustrated      169
Two-dimensional array (masses), mass location      166
Two-dimensional array (masses), surface mass representation      168
Two-dimensional example (linear programming)      392—394
Umbrella parents      302
Unboundedness property      406
Unconstrained motion      9 222 223—239
Unconstrained motion, equations of motion      228
Unconstrained motion, illustrative implementation      228—233
Unconstrained motion, Newtonian dynamics for      223
Unconstrained motion, practical implementation      234—239
Unique representation      597
Unique solution      441
Uniqueness question      441
Unit-area square      635
Unit-length quaternions      512 517 543
Unit-volume cube      638
Univariate calculus      692—704 see
Univariate calculus, continuity      697—698
Univariate calculus, defined      691
Univariate calculus, differentiation      698—701
Univariate calculus, functions      691
Univariate calculus, integration      701—704
Univariate calculus, limits      694—696
Univariate calculus, limits of a sequence      696—697
Univariate calculus, l’Hopital’s rule      701
Universal gravitational constant      32
Update function      238 239
Upper echelon matrices      577
Upper triangular matrices      571
V-Collide      364
Vector addition      584 588
Vector addition, associative      584
Vector addition, commutative      585
Vector addition, defining      589—590 591
Vector addition, scalar multiplication distributive over      595
vector class      671
Vector equality      588 589
Vector multiplication      587
Vector spaces      583—633 see
Vector spaces, axiom consequences      591
Vector spaces, axiom verification      589 594
Vector spaces, bases      598—601
Vector spaces, cross product      606—609
Vector spaces, defined      583
Vector spaces, definition of      588—593
Vector spaces, dot product      601 602
Vector spaces, finite dimensional      599 625
Vector spaces, linear combinations      593—594
Vector spaces, linear independence      595—601
Vector spaces, linear transformations      624—633
Vector spaces, orthogonal subspaces      613—615
Vector spaces, over real numbers      588
Vector spaces, projections      621—624
Vector spaces, properties      599
Vector spaces, spans      593—594
Vector spaces, subspaces      595
Vector spaces, triple products      609—613
Vector subtraction      79 585
Vector sum      586
Vector sum, distributing across      587 588
Vector sum, linear transformation of      624
Vectors, acceleration      17 21
Vectors, additive identity      585
Vectors, basis      152
Vectors, binormal      21
Vectors, coefficient      628
Vectors, degenerate feasible      403
Vectors, dependent      623
Vectors, difference      586 669
Vectors, direction      285 337 583
Vectors, domain      624
Vectors, feasible      396 402
Vectors, feasible basis      396 402
Vectors, frame      23
Vectors, independent      624
Vectors, knot      175—176
Vectors, linear combination of      593—594
Vectors, linearly dependent      596
Vectors, linearly independent      596 600 610
1 2 3 4 5 6 7 8 9 10 11
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте