Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Elberly D.H., Shoemake  K. — Game Physics 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå    Íàøëè îïå÷àòêó? 
 
                                
                                    Íàçâàíèå:   Game PhysicsÀâòîðû:   Elberly D.H., Shoemake  K. Àííîòàöèÿ:  Game Physics is an introduction to the ideas and techniques needed to create physically realistic 3D graphic environments. As a companion volume to Dave Eberly's industry standard 3D Game Engine Design, Game Physics shares a similar practical approach and format. Dave includes simulations to introduce the key problems involved and then gradually reveals the mathematical and physical concepts needed to solve them. He then describes all the algorithmic foundations and uses code examples and working source code to show how they are implemented, culminating in a large collection of physical simulations. This book tackles the complex, challenging issues that other books avoid, including Lagrangian dynamics, rigid body dynamics, impulse methods, resting contact, linear complementarity problems, deformable bodies, mass-spring systems, friction, numerical solution of differential equations, numerical stability and its relationship to physical stability, and Verlet integration methods. Dave even describes when real physics isn't necessary—and hacked physics will do.
ßçûê:  Ðóáðèêà:  Ôèçèêà /Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö ed2k:   ed2k stats Ãîä èçäàíèÿ:  2004Êîëè÷åñòâî ñòðàíèö:  776Äîáàâëåíà â êàòàëîã:  19.03.2006Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Edge(s), tetrahedrons 305 Edge(s), umbrella parents 302 Edge(s), vertex configurations 213 Edge-edge contact 287 321 Edge-to-edge intersections 242 270 315 Edge-to-face intersections 241 242 Eigendecomposition 652—655 Eigenspaces, dimension of 649 Eigenspaces, direct sum of 657 Eigenspaces, finding 647—648 Eigenspaces, generalized 657 658 Eigenvalues 60 455 632 646—651 667—668 Eigenvalues as roots 647 648 Eigenvalues of negative real parts 487 Eigenvalues of symmetric matrix 655 Eigenvalues, defined 646 Eigenvalues, diagonal entries 654 Eigenvalues, example 646 Eigenvalues, finding 647 647—648 Eigenvalues, method of construction 646 Eigenvalues, negative 504 Eigenvalues, of first-derivative matrix 505 Eigenvalues, real-valued 60—61 649 Eigenvectors 455 632 646—651 Eigenvectors, characterizing, for realvalued symmetric matrices 653 Eigenvectors, corresponding 647 Eigenvectors, defined 646 Eigenvectors, example 646 Eigenvectors, linearly independent 650 Eigenvectors, method of construction 646 Eigenvectors, unit-length 653 Elastic collision 249 Elasticity 161 Elementary row matrices 570—572 Elementary row matrices, defined 570 Elementary row matrices, examples 570—572 Elementary row matrices, inverses 573 Elementary row matrices, last row operation 578 Elementary row matrices, listing 572 Elementary row matrices, nonzero determinants 645 Elementary row matrices, product of 572 Elementary row operations, determinants of 644 Elementary row operations, order of 572 Elementary row operations, representation 570 Ellipse, area 91 418—419 Ellipse, axis-aligned 418 Ellipse, path of motion 107 108 Ellipse, points contained in 419 Energy 79—85 Energy, kinetic 14 79—81 Energy, potential 83—85 92 Energy, time derivative 85 Energy, total 85 Equality constraints 692 Equations of motion 32 93 165 224 227 228 343 Equations of motion for time-varying frames 115 Equations of motion, arbitrary mass-spring system 171 Equations of motion, constraining forces 113 Equations of motion, for continuum of mass 121—132 Equations of motion, for Foucault pendulum 95 96 Equations of motion, for particle systems 118—121 Equations of motion, for particles 102—114 Equations of motion, interpretation of 117—118 Equations of motion, Lagrangian 87 101 103 Equations of motion, motion on a curve 102—104 Equations of motion, motion on a surface 104—112 Equations of motion, Newton’s second law 224 Equations of motion, simple pendulum 492 Equations of motion, three-dimensional array (masses) 170—171 Equations of motion, two-dimensional array (masses) 168 Equations of motion, unconstrained motion 228 Equilibrium 39—41 450—455 Equilibrium, defined 40 450 Equilibrium, equations for 41 Equilibrium, objects in 40 Equilibrium, physical stability 488 Equilibrium, solution 450 451 Equilibrium, stability properties and 487 Equilibrium, unstable 487 Equilibrium, zero 487 Euler’s equations of motion 7 61 152—160 Euler’s method 234 277 see Euler’s method, consistency 488 Euler’s method, defined 458 Euler’s method, explicit 463 493—494 499—500 Euler’s method, implicit 464 495—496 500—501 Euler’s method, local truncation error 488 Euler’s method, modified 463 467 Euler’s method, numerical solver using 233 343 Euler’s method, obtaining 458 Even permutation 639 686 687 Exactness test, defined 84 Exactness test, satisfaction 85 Examples/exercises, this book 11 Existence question 440 Explicit Euler’s methods 463 493—494 see Explicit Euler’s methods, application to modal equation 499 Explicit Euler’s methods, applied to simple pendulum problem 494 Explicit Euler’s methods, characteristic polynomial 499 Explicit Euler’s methods, iterate generation pseudocode 493—494 Explicit Euler’s methods, numerical method 493 Explicit Euler’s methods, region of stability 500 Exponent matrices 448 663—664 Extended free-form deformation (EFFD) 203 External forces 31 267 see External forces, applied to rigid bodies 123 External forces, motion of objects undergoing 41 External forces, particle reaction to 88 External forces, particle system 40 External torque 267 Extraction, isocurve, in 2D images 208—212 Extraction, isosurface, in 3D images 212—220 Extraction, level set 206—208 Extraction, triangle 208 Extrapolation methods 473—478 see Extrapolation methods, application to differential equations 474—476 Extrapolation methods, Bulirsch — Stoer 478 Extrapolation methods, modified midpoint 477—478 Extrapolation methods, Neville’s 476 Extrapolation methods, polynomial interpolation and 476 Extrapolation methods, rational polynomial interpolation and 476—477 Extrapolation methods, Richardson extrapolation 473—474 Extreme point 302—303 Extreme point, search for 302 Extreme point, unique 304 Face(s) see also Intersections Face(s), moments for 64—65 Face(s), oriented bounding boxes (OBBs) 334 Face(s), polygonal, area 70 Face(s), polygonal, projection 71 Face(s), polyhedron 67 Face(s), products of inertia for 64—65 Face(s), spherical 305 306 Face(s), triangle 73 74—75 Face-to-face intersection 241 242 Feasible basis vectors for normal form 402 Feasible basis vectors, defined 396 Feasible dictionary 409 410 411 Feasible points 418 Feasible vectors for dual problem 406 407 Feasible vectors for primal problem 405 407 Feasible vectors in constraints 402 Feasible vectors, choosing 406 Feasible vectors, defined 396 Feasible vectors, degenerate 403 Feasible vectors, optimal 396 Fields 547—548 Fields, finite 588 Fields, vector 68 Find-intersection queries see also Queries Find-intersection queries, defined 222 Find-intersection queries, for convex polygons 316 Find-intersection queries, for convex polyhedra 325 FindIntersection function 329—331 Finite dimensional vector spaces 599 625 Finite fields 588 First-derivative matrix 492 493 First-order differential equations 437—440 see First-order differential equations with initial time 439 First-order differential equations, closed form solution 439 First-order differential equations, initial conditions 457 First-order differential equations, initial value problem 438 445 First-order differential equations, linear 439 First-order differential equations, numerical solvers 445 First-order differential equations, separable 439 First-order linear difference equations 730—731 Fixed axis, motion about 25—26 Flat board (rough plane) 148—150 Flat board (rough plane), defined 148 Flat board (rough plane), frictional forces 150 Flat board (rough plane), generalized force 150 Flat board (rough plane), illustrated 149 Flat board (rough plane), kinetic energy 149 Flat board (rough plane), Lagrangian equations of motion 150 Flat board (rough plane), velocity 148 Forces 32—41 Forces with velocity component 480—481 Forces without velocity component 479—480 Forces, applied 227 228 Forces, computing 238 Forces, concurrent 39 Forces, conservative 82 Forces, constraining 101 112—114 Forces, contact 240 267 Forces, couple 38 Forces, defined 31 Forces, displacement 102 Forces, dissipative 139—152 Forces, equilibrium 39—41 Forces, evaluation 276 Forces, external 31 267 Forces, frictional 35—36 Forces, generalized 103 Forces, gravitational 32—34 Forces, impulsive 240 245 246 Forces, infinitesimal 123 Forces, moment of 37—39 Forces, nonconcurrent 39 Forces, nonconservative 83 Forces, product of magnitude of 79—80 Forces, reactive 101 Forces, resolution, at center of mass 268 Forces, spring 34—35 Forces, torque 37—39 Forces, viscous 36—37 Forward difference approximation see also Derivative approximations Forward difference approximation, defined 719 Forward difference approximation, example 721—723 Forward difference approximation, occurrence 721 Forward difference approximation, parameters 721 Forward difference approximation, with second-order error 719 Forward elimination 563 564 Forward elimination, augmented matrix 557 Forward elimination, defined 548 Forward elimination, design 558 Forward elimination, elementary row operations and 555 Forward elimination, first step 556 Forward elimination, snags 549—550 Forward elimination, two equations in two unknowns 551—554 Foucault pendulum 94—97 Foucault pendulum, acceleration 95 Foucault pendulum, defined 94 Foucault pendulum, equation of motion 95 96 Foucault pendulum, illustrated 94 97 Foucault pendulum, tip path 97 Foucault pendulum, velocity 95 Four rigid bodies contact points example 261—263 Four rigid bodies contact points example, defined 261 Four rigid bodies contact points example, illustrated 261 Four rigid bodies contact points example, impulsive contact forces 261 Four rigid bodies contact points example, relative velocity equation 262 Four rigid bodies contact points example, simultaneous updates of angular momenta 262 Four rigid bodies contact points example, simultaneous updates of linear momenta 262 Fourth-order Runge — Kutta methods 469—470 see Fourth-order Runge — Kutta methods, defined 469 Fourth-order Runge — Kutta methods, Gill’s 470 Fourth-order Runge — Kutta methods, RK4a 469—470 Free-form deformation (FFD) 197—203 Free-form deformation (FFD) with B-spline volume function 200—201 203 Free-form deformation (FFD), algorithm 200 Free-form deformation (FFD), control points 204 Free-form deformation (FFD), defined 200 Free-form deformation (FFD), extended (EFFD) 203 Free-form deformation (FFD), illustrated 204 Freely spinning top example 155—156 Freely spinning top example, angular speed 155 Freely spinning top example, defined 155 Freely spinning top example, Euler equations 155 Freely spinning top example, illustrated 155 Freely spinning top example, top angular velocity 155 Freely spinning top example, world coordinate axes 155 Freely spinning top modification 156—158 Freely spinning top modification, angular momentum 157 Freely spinning top modification, defined 156 Freely spinning top modification, differential equations 157—158 Freely spinning top modification, Euler’s equations 156 Freely spinning top modification, snapshots 159 Freely spinning top modification, torque 156 Frenet — Serret equations 22 Fresnel effect 386 Fresnel factor in refraction application 388 Fresnel factor, defined 386 Fresnel factor, per pixel 388 Fresnel reflectance 386—388 Fresnel reflectance, defined 386 Fresnel reflectance, reflection effects produced by 384 Fresnel shader application 386—388 Fresnel shader application, design 386 Fresnel shader application, illustrated 387 Friction 35—36 see Friction on flat surfaces 141 Friction, coefficient of 140 Friction, defined 35 Friction, flat board on rough plane 148—150 Friction, kinetic, coefficient of 36 Friction, Lagrangian dynamics and 87 Friction, magnitude 35 Friction, multiple particles on rough plane 145—146 Friction, Newtonian dynamics and 87 Friction, one particle on rough plane 141—143 Friction, simple pendulum friction example 140 Friction, solid box on rough plane 150—152 Friction, static 36 Friction, static, coefficient of 36 Friction, thin rod on rough plane 147—148 Friction, two particles on rough plane 143—145 Friction, velocity computation and 480 Frictionless metal chute example 111—112 Frustum, object outside 348 Full pivoting 565 Functions (calculus) as indeterminate form 701 Functions (calculus), bivariate, derivatives 724—725 Functions (calculus), collection of 691 Functions (calculus), continuous 697 704 Functions (calculus), defined 691 Functions (calculus), derivatives 698 700 701 Functions (calculus), differentiable 699 Functions (calculus), discontinuous 697—698 Functions (calculus), domain 691 Functions (calculus), global maximum 712 
                            
                     
                  
			Ðåêëàìà