Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Riley, Hobson — Mathematical Methods for Physics and Engineering
Riley, Hobson — Mathematical Methods for Physics and Engineering



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Mathematical Methods for Physics and Engineering

Авторы: Riley, Hobson

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2-d edition

Количество страниц: 1253

Добавлена в каталог: 17.02.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Legendre equation, general series solution      556
Legendre functions      556
Legendre functions $P_{\ell}(x)$, associated Legendre functions      703
Legendre functions of second kind      557
Legendre linear equation      509
Legendre polynomials $P_{\ell}(x)$      557
Legendre polynomials $P_{\ell}(x)$ in Gaussian integration      1168
Legendre polynomials $P_{\ell}(x)$, associated Legendre functions      666
Legendre polynomials $P_{\ell}(x)$, generating function      562—564 594
Legendre polynomials $P_{\ell}(x)$, graph of      557
Legendre polynomials $P_{\ell}(x)$, normalisation      557 559
Legendre polynomials $P_{\ell}(x)$, orthogonality      560 594 668
Legendre polynomials $P_{\ell}(x)$, recurrence relation      562
Legendre polynomials $P_{\ell}(x)$, Rodrigues' formula      559 594
Leibnitz' rule for differentiation of integrals      181
Leibniz' theorem      49—51
Length of a vector      222—223
Length of plane curves      74—75 347
Length of space curves      347
Length of tensor form      831
Levi-Civita symbol      see "$\epsilon_{ijk}$ Levi-Civita tensor"
Likelihood function      1097
Limits      144—147
Limits of functions containing exponents      145
Limits of integrals      60
Limits of integrals, containing variables      191
Limits of products      144
Limits of quotients      144—147
Limits of sums      144
Limits, definition      144
Limits, L'Hopital's rule      145—147
Line charge, electrostatic potential      726 738
Line integrals and Cauchy integrals      745—747
Line integrals and Stokes' theorem      412—415
Line integrals of scalars      383—393
Line integrals of vectors      383—395
Line integrals, physical examples      387
Line integrals, round closed loop      392
Line, vector equation of      230—231
Linear dependence and independence of basis vectors      221
Linear dependence and independence, definition in a vector space      247
Linear dependence and independence, relationship with rank      272
Linear differential operator $\mathcal{L}$      517 551 581
Linear differential operator $\mathcal{L}$ for Sturm — Liouville equation      591—593
Linear differential operator $\mathcal{L}$, adjoint $\mathcal{L}^{\dag}$      587
Linear differential operator $\mathcal{L}$, eigenfunctions      see "Eigenfunctions"
Linear differential operator $\mathcal{L}$, eigenvalues      see "Eigenvalues of
Linear differential operator $\mathcal{L}$, Hermitian (self-adjoint)      583 587—591
Linear equations, differential, first-order ODE      480
Linear equations, differential, general ODE      496—523
Linear equations, differential, ODE with constant coefficients      498—509
Linear equations, differential, ODE with variable coefficients      509—523
Linear independence of functions      497
Linear independence of functions, Wronskian test      497 538
Linear integral operator $\mathcal{K}$      864
Linear integral operator $\mathcal{K}$ and Schmidt — Hilbert theory      875—877
Linear integral operator $\mathcal{K}$, Hermitian conjugate      864
Linear integral operator $\mathcal{K}$, inverse      865
Linear interpolation for algebraic equations      1152—1153
Linear least squares, method of      1114
Linear molecules, normal modes of      326—328
Linear molecules, symmetries of      919
Linear operators      252—254
Linear operators in a particular basis      253
Linear operators, associativity      254
Linear operators, distributivity over addition      254
Linear operators, eigenvalues and eigenvectors      277
Linear operators, inverse      254
Linear operators, non-commutativity      254
Linear operators, particular: identity, null/zero, singular/non-singular      254
Linear operators, properties      254
Linear vector spaces      see "Vector spaces"
Liouville's theorem      747
Ln of a complex number      102—103 720
ln, Maclaurin series for      143
Log-likelihood function      1100
Longitudinal vibrations in a rod      610
Lottery (UK), and hypergeometric distribution      1016
Lower triangular matrices      274
Maclaurin series      141
Maclaurin series, standard expressions      143
Madelung constant      151
Magnetic dipole      224
Magnitude of a vector      222—223
Magnitude of a vector in terms of scalar/dot product      225
Marginal distributions      1040
Mass of non-uniform bodies      196
Matrices      246—312
Matrices as a vector space      257
Matrices as arrays of numbers      254
Matrices as representation of a linear operator      254
Matrices, algebra of      255
Matrices, algebra of, addition      256—257
Matrices, algebra of, and normal modes      see "Normal modes"
Matrices, algebra of, change of basis      288—290
Matrices, algebra of, Cholesky separation      318
Matrices, algebra of, diagonalisation      see "Diagonalisation of matrices"
Matrices, algebra of, multiplication      257—259
Matrices, algebra of, multiplication by a scalar      256—257
Matrices, algebra of, multiplication, and common eigenvalues      283
Matrices, algebra of, multiplication, commutator      314
Matrices, algebra of, multiplication, non-commutativity      259
Matrices, algebra of, numerical methods      see "Numerical methods for simultaneous linear equations"
Matrices, algebra of, similarity transformations      see "Similarity transformations"
Matrices, algebra of, simultaneous linear equations      see "Simultaneous linear equations"
Matrices, algebra of, subtraction      256
Matrices, column      255
Matrices, derived, adjoint      261—263
Matrices, derived, complex conjugate      261—263
Matrices, derived, Hermitian conjugate      261—263
Matrices, derived, inverse      see "Inverse matrices"
Matrices, derived, transpose      255
Matrices, elements      254
Matrices, elements, minors and cofactors      264
Matrices, identity/unit      259
Matrices, properties of, anti-Hermitian      see "Anti-Hermitian matrices"
Matrices, properties of, antisymmetric/skew-symmetric      275
Matrices, properties of, determinant      see "Determinants"
Matrices, properties of, diagonal      273
Matrices, properties of, eigenvalues      see "Eigenvalues"
Matrices, properties of, eigenvectors      see "Eigenvectors"
Matrices, properties of, Hermitian      see "Hermitian matrices"
Matrices, properties of, normal      see "Normal matrices"
Matrices, properties of, nullity      298
Matrices, properties of, order      254
Matrices, properties of, orthogonal      275—276
Matrices, properties of, rank      272
Matrices, properties of, square      254
Matrices, properties of, symmetric      275
Matrices, properties of, trace/spur      263
Matrices, properties of, triangular      274
Matrices, properties of, tridiagonal      1162—1164 1190
Matrices, properties of, unitary      see "Unitary matrices"
Matrices, row      255
Matrices, zero/null      259
Matrix elements in quantum mechanics as integrals      945
Matrix elements in quantum mechanics, dipole      950—951 957
Maxima and minima (local) of a function of constrained variables      see "Lagrange undetermined multipliers"
Maxima and minima (local) of a function of one real variable      51—53
Maxima and minima (local) of a function of one real variable, sufficient conditions      52
Maxima and minima (local) of a function of several real variables      165—170
Maxima and minima (local) of a function of several real variables, sufficient conditions      167 170
Maximum modulus theorem      756
Maximum-likelihood, method of      1097—1113
Maximum-likelihood, method of extended      1112
Maximum-likelihood, method of, bias      1102
Maximum-likelihood, method of, data modelling      1097
Maximum-likelihood, method of, estimator      1098
Maximum-likelihood, method of, log-likelihood function      1100
Maximum-likelihood, method of, parameter estimation      1097
Maximum-likelihood, method of, transformation invariance      1102
Maxwell — Boltzmann statistics      980
Maxwell's electromagnetic equations      379 414 828
Maxwell's thermodynamic relations      179—181
Mean $\mu$ from MGF      1005
Mean $\mu$ from PGF      1000
Mean $\mu$ of RYD      986—987
Mean $\mu$ of sample      1066
Mean $\mu$ of sample: geometric, harmonic, root mean square      1066
Mean value of a function of one variable      73—74
Mean value of a function of several variables      202
Mean value theorem      57—58
Median of RVD      987
Membrane, deformed rim      658—660
Membrane, normal modes      673 954
Membrane, transverse vibrations      610 673 702 954
Method of images      639 693—699 738
Method of images, disc (section of cylinder)      699 701
Method of images, infinite plate      694
Method of images, intersecting plates in two dimensions      696
Method of images, sphere      697—698 706
Metric tensor      806—809 812
Metric tensor and Christoffel symbols      815
Metric tensor and scale factors      806 821
Metric tensor, covariant derivative of      831
Metric tensor, determinant      806 813
Metric tensor, determinant, derivative of      822
Metric tensor, length element      806
Metric tensor, raising/lowering index      808 812
Metric tensor, scalar product      807
Metric tensor, volume element      806 830
mgf      see "Moment generating functions"
Milne's method      1182
Minimum-variance estimator      1075
Minor of a matrix element      264
Mixed, components of tensor      806 811 818
ML estimator      1098
ML estimators      1098
ML estimators, bias      1102
ML estimators, confidence limits      1104
ML estimators, efficiency      1103
ML estimators, transformation invariance      1102
Mod N, multiplication      891
Mode of RVD      987
MODULO      see "mod N multiplication"
Modulus of a complex number      90
Modulus of a vector      see "Magnitude of a vector molecules"
Molecules, bonding in      945 947—950
Molecules, dipole moments of      919—920
Molecules, symmetries of      919
Moment generating functions (MGF)      1004—1009
Moment generating functions (MGF) and central limit theorem      1037—1038
Moment generating functions (MGF) and PGF      1005
Moment generating functions (MGF), mean and variance      1005
Moment generating functions (MGF), particular distributions, binomial      1012
Moment generating functions (MGF), particular distributions, exponential      1033
Moment generating functions (MGF), particular distributions, Gaussian      1005 1027
Moment generating functions (MGF), particular distributions, Poisson      1019
Moment generating functions (MGF), properties      1005
Moments of inertia and inertia tensor      800
Moments of inertia of disc      211
Moments of inertia of rectangular lamina      201
Moments of inertia of right circular cylinder      212
Moments of inertia of sphere      208
Moments of inertia, definition      201
Moments of inertia, perpendicular axes theorem      212
Moments of RVD      989
Moments, central      990
Moments, vector representation of      227
Momentum as first-order tensor      782
Monomorphism      903
Monte Carlo methods, antithetic variates      1174
Monte Carlo methods, control variates      1173
Monte Carlo methods, crude      1172
Monte Carlo methods, hit or miss      1174
Monte Carlo methods, importance sampling      1172
Monte Carlo methods, multiple integrals      1176
Monte Carlo methods, of integration      1170—1177
Monte Carlo methods, random number generation      1177
Monte Carlo methods, stratified sampling      1172
Morera's theorem      744
Multinomial distribution      1050—1051
Multinomial distribution and multiple Poisson distribution      1060
Multiple angles, trigonometric formulae      10
Multiple integrals, application in finding, area and volume      194—196
Multiple integrals, application in finding, mass, centre of mass and centroid      196—198
Multiple integrals, application in finding, mean value of a function of several variables      202
Multiple integrals, application in finding, moments of inertia      201
Multiple integrals, change of variables, double integrals      203—207
Multiple integrals, change of variables, general properties      209—210
Multiple integrals, change of variables, triple integrals      207—209
Multiple integrals, definitions of, double integrals      190—191
Multiple integrals, definitions of, triple integrals      193
Multiple integrals, evaluation      191—193
Multiple integrals, notation      191 192 194
Multiple integrals, order of integration      191—192 194
Multiple integrals, order of integration, caveats      193
Multiplication tables for groups      see "Group multiplication tables"
Multiplication theorem      see "Parseval's theorem"
Multivalued functions      721—723
Multivalued functions, integration of      762—764
Multivariate distributions      1038 1049—1053
Multivariate distributions, change of variables      1048—1049
Multivariate distributions, Gaussian      1051
Multivariate distributions, multinomial      1050—1051
Mutually exclusive events      962 971
Nabla $\nabla$      see "Gradient operator (grad)"
Natural logarithm      see "ln" "Ln"
Natural numbers, in series      31 124—125
Natural representations      923 952
Necessary and sufficient conditions      34—35
Negative function      583
Negative vector      247
Neumann boundary conditions      635
Neumann boundary conditions, Green's functions      688 700—702
Neumann boundary conditions, method of images      700—702
Neumann boundary conditions, self-consistency      700
Neumann series      872—874
Newton — Raphson (NR) method      1154—1156
Newton — Raphson (NR) method, order of convergence      1157
Neyman — Pearson test      1122
Nodes of oscillation      626
Non-Abelian groups      894—898
Non-Abelian groups, functions      897
Non-Abelian groups, matrices      896
Non-Abelian groups, permutations      898—900
Non-Abelian groups, rotations-reflections      894
Non-Cartesian coordinates      see "Curvilinear cylindrical plane "Spherical
Non-linear differential equations      see "Ordinary differential equations non-linear"
Non-linear least squares, method of      1118
Norm of function      584
Norm of vector      249
Normal derivative      356
Normal distribution      see "Gaussian (normal) distribution"
Normal matrices      277
Normal matrices, eigenvectors and eigenvalues      278—281
Normal matrices, eigenvectors, completeness      280
Normal matrices, eigenvectors, orthogonality      280—281
Normal modes      322—335
Normal modes, characteristic equation      325
Normal modes, coupled pendulums      335 337
Normal modes, definition      326
Normal modes, degeneracy      952—955
Normal modes, frequencies of      325
Normal modes, linear molecular system      326—328
Normal modes, membrane      673 954
Normal modes, normal coordinates      326
Normal modes, normal equations      326
Normal modes, rod-string system      323—326
Normal modes, symmetries of      328
1 2 3 4 5 6 7 8 9 10
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2019
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте