Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Gelman A., Carlin J.B., Stern H.S. — Bayesian data analysis
Gelman A., Carlin J.B., Stern H.S. — Bayesian data analysis



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Bayesian data analysis

Авторы: Gelman A., Carlin J.B., Stern H.S.

Аннотация:

Incorporating new and updated information, this second edition of THE bestselling text in Bayesian data analysis continues to emphasize practice over theory, describing how to conceptualize, perform, and critiques statistical analysis from a Bayesian perspective. Changes in the new edition include: added material on how Bayesian methods are connected to other approaches, stronger focus on MCMC, added chapter on further computation topics, more examples, and additional chapters on current models for Bayesian data analysis such as equation models, generalized linear mixed models, and more. The book is an introductory text and a reference for working scientists throughout their professional life.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 2004

Количество страниц: 668

Добавлена в каталог: 11.02.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Prior distribution, conjugate, exponential model      55
Prior distribution, conjugate, generalized linear models      421
Prior distribution, conjugate, linear regression      382—385
Prior distribution, conjugate, multinomial model      83 434 533
Prior distribution, conjugate, multivariate normal model      85 87
Prior distribution, conjugate, normal model      46 50 78
Prior distribution, conjugate, Poisson model      52
Prior distribution, estimation from past data      118
Prior distribution, hierarchical      see "Hierarchical models" "Hyperprior
Prior distribution, improper      61 100
Prior distribution, improper, and Bayes factors      194
Prior distribution, informative      39—55 260
Prior distribution, nonconjugate      41 45 90
Prior distribution, noninformative      61—66 247 252
Prior distribution, noninformative, binomial model      43 63
Prior distribution, noninformative, Bugs software      593 596 597
Prior distribution, noninformative, difficulties      64
Prior distribution, noninformative, for hyperparameters      125 127—129 134 136 137 470
Prior distribution, noninformative, for many parameters      253
Prior distribution, noninformative, generalized linear models      420
Prior distribution, noninformative, Jeffreys' rule      62—63 66 69
Prior distribution, noninformative, linear regression      355
Prior distribution, noninformative, multinomial model      536
Prior distribution, noninformative, multivariate normal model      88
Prior distribution, noninformative, normal model      74
Prior distribution, noninformative, pivotal quantities      64 66
Prior distribution, noninformative, Student-t model      454
Prior distribution, noninformative, warnings      see "Posterior distribution improper"
Prior distribution, predictive      8
Prior distribution, proper      61
Prior distribution, semi-conjugate      81 134
Prior predictive checks      190 193
Prior predictive distribution      8
Prior predictive distribution, normal model      47
probability      22—25 29
Probability model      3
Probability, assignment      14—21 29 30
Probability, foundations      11—14 28
Probability, notation      7
Probit regression      417
Probit regression for multinomial data      430 440
Probit regression, Gibbs sampler      419
Probit regression, latent-data interpretation      419
Probit transformation      25
Propensity scores      206—207 227 228 238
Proper prior distribution      see "Prior distribution"
Proportion of female births      33 43—46
Propp, J.      348
Psychological data      165—170 468—479
PX-EM algorithm      324 331 see
QR decomposition      357 385
Quality-adjusted life expectancy      553
Quinn, K.      440 609
R      see "Software"
Racine, A.      28 89 95 192 309 514 515
Radon decision problem      195 385 555—567
Raftery, A.      97 191 192 412 458
Raghunathan, T.      151 190 457 539 568
Raiffa, H.      66 568
Random-effects model      390—392
Random-effects model and superpopulation model in ANOVA      409
Random-effects model, analysis of variance (ANOVA)      406
Random-effects model, election forecasting example      396
Random-effects model, non-nested example      428—430
Random-effects model, several batches      391
Random-effects models      see also "Hierarchical models" "Analysis
Randomization      223—226
Randomization and ignorability      226 239
Randomization, complete      223
Randomization, given covariates      224
Randomized blocks      240
Rank test      252
Rao, J.      150
Rat tumors      118—120 127—131 151
Ratio estimation      260 272
Raudenbush, S.      411
Record linkage      17—21
Record-breaking data      238
Reeves, R.      349
Reference prior distributions      see "Noninformative prior distribution"
Reference set for predictive checking      165
Regeneration for MCMC      340 348
Regression models      353—387 see
Regression models, Bayesian justification      354
Regression models, explanatory variables      6 201 353 369—371
Regression models, explanatory variables, exchangeability      6
Regression models, explanatory variables, exclude when irrelevant      371
Regression models, explanatory variables, ignorable models      205
Regression models, explanatory variables, include even when nonidentified      261—263
Regression models, goals of      367—369
Regression models, hierarchical      389—414
Regression models, variable selection      371
Regression models, variable selection, why we prefer hierarchical models      405—406
Regression to the mean      249
Regression trees      515
Rejection sampling      284 310
Rejection sampling, picture of      285
Replications      161
Residual plots      192 359
Residual plots, binned      170—171
Residual plots, dilution example      503
Residual plots, incumbency example      365
Residual plots, nonlinear models      503 513
Residual plots, pain relief example      170
Residual plots, toxicology example      513
Residuals      170
Response surface      148
Response variable      353
Restarting for MCMC      340 348
Reversible jump sampling for MCMC      338—339 348
Richardson, S.      151 308 348 480
Ridge regression      412
Riggan, W.      66 151
Ripley, B.      29 190 308 349 494 584 608
Robbins, H.      150
Robert, C.      308 309
Roberts, G.      309 348
Roberts, I.      238
Robins, J.      237
Robinson, G.      411
Robit regression (robust alternative to logit and probit)      447
Robust inference      177 191 270 443—459
Robust inference for regression      455—457
Robust inference, SAT coaching      451—455
Robust inference, various estimands      269
Rombola, F.      29
Rosenbaum, P.      238
Rosenberg, B.      515
Rosenbluth, A.      308
Rosenbluth, M.      308
Rosenkranz, S.      191
Rosenthal, J.      308 309
Rosner, G.      480
Ross, S.      29
Rotnitzky, A.      237
Rounded data      96 244
Roweth, D.      348
Roy all, R.      272
Rubin, D.      28 29 113 151 152 190 192 237 238 245 272 309 331 348 385 411 440 457 458 479 480 494 539 540
Runger, G.      195
Ruppert, D.      514
S, S-Plus, and R      591
Sahu, S.      309 412 440
Sampling      207—218 see
Sampling, capture-recapture      242
Sampling, cluster      214—216 241
Sampling, poststratification      228 428—430
Sampling, ratio estimation      260 272
Sampling, stratified      209—214
Sampling, unequal selection probabilities      216—218 242—244
Sampson, R.      411
Samuhel, M.      237 539
Sargent, D.      191 413
SAT coaching experiments      138—145
SAT coaching experiments, difficulties with natural non-Bayesian methods      139
SAT coaching experiments, model checking for      186—190
SAT coaching experiments, robust inference for      451—455
Satterthwaite, F.      539
Savage, I.      193
Savage, L.      113 237 568
Scalar Gibbs sampler for hierarchical regression      402
Scale parameter      50
Scaled inverse-$\chi^{2}$ distribution      50 574 580
Schafer, J.      440 539
Scharfstein, D.      237
Schenker, N.      113 539
Schildkraut, J.      569
Schilling, S.      348
Schizophrenia reaction times, example of mixture modeling      468—479
Schlaifer, R.      66
Schmidt-Nielsen, K.      387
Schultz, B.      113 539
Scott, A.      237 238
Searle, S.      411
Seber, G.      242 332
Sedransk, J.      151 192 238
Seidenfeld, T.      238
Selection of predictors      254
Sellke, T.      255
Selvin, S.      31
Selwyn, M.      151 439
SEM and SECM algorithms      322—324 331
Semi-conjugate prior distribution      81 134
Sensitivity analysis      177 189—190 443—459
Sensitivity analysis and data collection      270
Sensitivity analysis and realistic models      270
Sensitivity analysis, balanced and unbalanced data      227
Sensitivity analysis, cannot be avoided by setting up a super-model      158
Sensitivity analysis, Census recoding      261—263
Sensitivity analysis, estimating a population total      265—269
Sensitivity analysis, incumbency example      366
Sensitivity analysis, SAT coaching      451—455
Sensitivity analysis, using t models      454—455
Sensitivity analysis, various estimands      269
Separation models for covariance matrices      483—485
Sequential designs      221 244
Serial dilution assay, example of a nonlinear model      498—504 514
Sex ratio      33 43—46
Shafer, G.      28
Shao, Q.      308
Sharpies, L.      309
Shaw, J.      348
Sheiner, L.      515
Shen, W.      66
Shen, X.      589
Shnaidman, M.      514
Shoemaker, A.      439
Shrinkage      36—37 47 54 133 150
Shrinkage, graphs of      131 142
Silver, R.      238
Simoncelli, E.      494
Simple random sampling      207—209
Simple random sampling, difficulties of estimating a population total      265
Simulated tempering for MCMC      337—338 348
Simulation      see "Posterior simulation"
Singer, E.      568
Single-parameter models      33—72
Singpurwalla, N.      28
Sinharay, S.      190
Sinsheimer, J.      458
SIR      see "Importance resampling"
Skene, A.      152 348
Skilling, J.      66
Skinner, C.      238
Sleight, P.      151
Slice sampling for MCMC      336 348
Slovenia survey      534—539
Slovic, P.      28 568
Small-area estimation      151
Smith, A.      28 66 89 95 150 190—192 309 331 348 411 439 457 480 514 515
Smith, T.      152 192 237 238
Snedecor, G.      387
Snee, R.      413 414
Snell, E.      29
Snijders, T.      411
Snyder, J.      29 385
Software      591—609
Software, Bugs      27 29 151 592—600
Software, debugging      607—608
Software, extended example using Bugs and R      592—607
Software, programming tips      278—282 607—608
Software, R      27 29 600—607
Software, running Bugs from R      592
Software, setting up      591
Software, WinBugs and Bugs      592
Solenberger, P.      539
Sommer, A.      230
Souhami, R.      255
Soules, G.      331
Space-time models      494
Spatial models      493 494
Speed of light example      77 160
Speed of light example, posterior predictive checks      164
Speed, T.      237 439
Speroff, T.      238
Spiegelhalter, D.      29 151 152 191 192 194 255 308 309 608
Spitzer, E.      440
Spline models      515
Sports, football      14—17 29
Sports, golf      515
Stability      200
Stable estimation      111
Stable unit treatment value assumption      201 239
Stallard, E.      66 151
Standard errors      103
Standard normal distribution      578
State-level opinions from national polls      428—430
Statistical packages      see "Software"
Statistically significant but not practically significant      176
Statistically significant but not practically significant, regression example      366
Stefanski, L.      514
Stein, C.      150
Stephan, F.      440
Stephens, M.      480
Stepwise ascent      312
Stepwise regression, Bayesian interpretation of      405
Stern, A.      66
Stern, H.      29 190 191 193 440 480 540
Sterne, J.      255
Stevens, M.      568
Stevenson, M.      238
Stigler, S.      65 78 95 255
Stone, M.      66 190
Stratified sampling      209—214
Stratified sampling, hierarchical model      212—214 310
Stratified sampling, pre-election polling      210—214
Strenio, J.      411
Strong ignorability      205
Student-t approximation      315
Student-t distribution      76 576 581
Student-t model      446 451—457
Student-t model, computation using data augmentation      303—304
Student-t model, computation using parameter expansion      304—305
Student-t model, interpretation as mixture      446
Subjectivity      12 14 28 31 257 557 567
Sufficient statistics      42 247
Summary statistics      104
Superpopulation inference      202—203 205 208—209 211 212 216 218—221 241
Superpopulation inference in ANOVA      408—409
Supplemented EM (SEM) algorithm      322—324
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте