Авторизация
Поиск по указателям
Gelman A., Carlin J.B., Stern H.S. — Bayesian data analysis
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Bayesian data analysis
Авторы: Gelman A., Carlin J.B., Stern H.S.
Аннотация: Incorporating new and updated information, this second edition of THE bestselling text in Bayesian data analysis continues to emphasize practice over theory, describing how to conceptualize, perform, and critiques statistical analysis from a Bayesian perspective. Changes in the new edition include: added material on how Bayesian methods are connected to other approaches, stronger focus on MCMC, added chapter on further computation topics, more examples, and additional chapters on current models for Bayesian data analysis such as equation models, generalized linear mixed models, and more. The book is an introductory text and a reference for working scientists throughout their professional life.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2nd edition
Год издания: 2004
Количество страниц: 668
Добавлена в каталог: 11.02.2006
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Prior distribution, conjugate, exponential model 55
Prior distribution, conjugate, generalized linear models 421
Prior distribution, conjugate, linear regression 382—385
Prior distribution, conjugate, multinomial model 83 434 533
Prior distribution, conjugate, multivariate normal model 85 87
Prior distribution, conjugate, normal model 46 50 78
Prior distribution, conjugate, Poisson model 52
Prior distribution, estimation from past data 118
Prior distribution, hierarchical see "Hierarchical models" "Hyperprior
Prior distribution, improper 61 100
Prior distribution, improper, and Bayes factors 194
Prior distribution, informative 39—55 260
Prior distribution, nonconjugate 41 45 90
Prior distribution, noninformative 61—66 247 252
Prior distribution, noninformative, binomial model 43 63
Prior distribution, noninformative, Bugs software 593 596 597
Prior distribution, noninformative, difficulties 64
Prior distribution, noninformative, for hyperparameters 125 127—129 134 136 137 470
Prior distribution, noninformative, for many parameters 253
Prior distribution, noninformative, generalized linear models 420
Prior distribution, noninformative, Jeffreys' rule 62—63 66 69
Prior distribution, noninformative, linear regression 355
Prior distribution, noninformative, multinomial model 536
Prior distribution, noninformative, multivariate normal model 88
Prior distribution, noninformative, normal model 74
Prior distribution, noninformative, pivotal quantities 64 66
Prior distribution, noninformative, Student-t model 454
Prior distribution, noninformative, warnings see "Posterior distribution improper"
Prior distribution, predictive 8
Prior distribution, proper 61
Prior distribution, semi-conjugate 81 134
Prior predictive checks 190 193
Prior predictive distribution 8
Prior predictive distribution, normal model 47
probability 22—25 29
Probability model 3
Probability, assignment 14—21 29 30
Probability, foundations 11—14 28
Probability, notation 7
Probit regression 417
Probit regression for multinomial data 430 440
Probit regression, Gibbs sampler 419
Probit regression, latent-data interpretation 419
Probit transformation 25
Propensity scores 206—207 227 228 238
Proper prior distribution see "Prior distribution"
Proportion of female births 33 43—46
Propp, J. 348
Psychological data 165—170 468—479
PX-EM algorithm 324 331 see
QR decomposition 357 385
Quality-adjusted life expectancy 553
Quinn, K. 440 609
R see "Software"
Racine, A. 28 89 95 192 309 514 515
Radon decision problem 195 385 555—567
Raftery, A. 97 191 192 412 458
Raghunathan, T. 151 190 457 539 568
Raiffa, H. 66 568
Random-effects model 390—392
Random-effects model and superpopulation model in ANOVA 409
Random-effects model, analysis of variance (ANOVA) 406
Random-effects model, election forecasting example 396
Random-effects model, non-nested example 428—430
Random-effects model, several batches 391
Random-effects models see also "Hierarchical models" "Analysis
Randomization 223—226
Randomization and ignorability 226 239
Randomization, complete 223
Randomization, given covariates 224
Randomized blocks 240
Rank test 252
Rao, J. 150
Rat tumors 118—120 127—131 151
Ratio estimation 260 272
Raudenbush, S. 411
Record linkage 17—21
Record-breaking data 238
Reeves, R. 349
Reference prior distributions see "Noninformative prior distribution"
Reference set for predictive checking 165
Regeneration for MCMC 340 348
Regression models 353—387 see
Regression models, Bayesian justification 354
Regression models, explanatory variables 6 201 353 369—371
Regression models, explanatory variables, exchangeability 6
Regression models, explanatory variables, exclude when irrelevant 371
Regression models, explanatory variables, ignorable models 205
Regression models, explanatory variables, include even when nonidentified 261—263
Regression models, goals of 367—369
Regression models, hierarchical 389—414
Regression models, variable selection 371
Regression models, variable selection, why we prefer hierarchical models 405—406
Regression to the mean 249
Regression trees 515
Rejection sampling 284 310
Rejection sampling, picture of 285
Replications 161
Residual plots 192 359
Residual plots, binned 170—171
Residual plots, dilution example 503
Residual plots, incumbency example 365
Residual plots, nonlinear models 503 513
Residual plots, pain relief example 170
Residual plots, toxicology example 513
Residuals 170
Response surface 148
Response variable 353
Restarting for MCMC 340 348
Reversible jump sampling for MCMC 338—339 348
Richardson, S. 151 308 348 480
Ridge regression 412
Riggan, W. 66 151
Ripley, B. 29 190 308 349 494 584 608
Robbins, H. 150
Robert, C. 308 309
Roberts, G. 309 348
Roberts, I. 238
Robins, J. 237
Robinson, G. 411
Robit regression (robust alternative to logit and probit) 447
Robust inference 177 191 270 443—459
Robust inference for regression 455—457
Robust inference, SAT coaching 451—455
Robust inference, various estimands 269
Rombola, F. 29
Rosenbaum, P. 238
Rosenberg, B. 515
Rosenbluth, A. 308
Rosenbluth, M. 308
Rosenkranz, S. 191
Rosenthal, J. 308 309
Rosner, G. 480
Ross, S. 29
Rotnitzky, A. 237
Rounded data 96 244
Roweth, D. 348
Roy all, R. 272
Rubin, D. 28 29 113 151 152 190 192 237 238 245 272 309 331 348 385 411 440 457 458 479 480 494 539 540
Runger, G. 195
Ruppert, D. 514
S, S-Plus, and R 591
Sahu, S. 309 412 440
Sampling 207—218 see
Sampling, capture-recapture 242
Sampling, cluster 214—216 241
Sampling, poststratification 228 428—430
Sampling, ratio estimation 260 272
Sampling, stratified 209—214
Sampling, unequal selection probabilities 216—218 242—244
Sampson, R. 411
Samuhel, M. 237 539
Sargent, D. 191 413
SAT coaching experiments 138—145
SAT coaching experiments, difficulties with natural non-Bayesian methods 139
SAT coaching experiments, model checking for 186—190
SAT coaching experiments, robust inference for 451—455
Satterthwaite, F. 539
Savage, I. 193
Savage, L. 113 237 568
Scalar Gibbs sampler for hierarchical regression 402
Scale parameter 50
Scaled inverse- distribution 50 574 580
Schafer, J. 440 539
Scharfstein, D. 237
Schenker, N. 113 539
Schildkraut, J. 569
Schilling, S. 348
Schizophrenia reaction times, example of mixture modeling 468—479
Schlaifer, R. 66
Schmidt-Nielsen, K. 387
Schultz, B. 113 539
Scott, A. 237 238
Searle, S. 411
Seber, G. 242 332
Sedransk, J. 151 192 238
Seidenfeld, T. 238
Selection of predictors 254
Sellke, T. 255
Selvin, S. 31
Selwyn, M. 151 439
SEM and SECM algorithms 322—324 331
Semi-conjugate prior distribution 81 134
Sensitivity analysis 177 189—190 443—459
Sensitivity analysis and data collection 270
Sensitivity analysis and realistic models 270
Sensitivity analysis, balanced and unbalanced data 227
Sensitivity analysis, cannot be avoided by setting up a super-model 158
Sensitivity analysis, Census recoding 261—263
Sensitivity analysis, estimating a population total 265—269
Sensitivity analysis, incumbency example 366
Sensitivity analysis, SAT coaching 451—455
Sensitivity analysis, using t models 454—455
Sensitivity analysis, various estimands 269
Separation models for covariance matrices 483—485
Sequential designs 221 244
Serial dilution assay, example of a nonlinear model 498—504 514
Sex ratio 33 43—46
Shafer, G. 28
Shao, Q. 308
Sharpies, L. 309
Shaw, J. 348
Sheiner, L. 515
Shen, W. 66
Shen, X. 589
Shnaidman, M. 514
Shoemaker, A. 439
Shrinkage 36—37 47 54 133 150
Shrinkage, graphs of 131 142
Silver, R. 238
Simoncelli, E. 494
Simple random sampling 207—209
Simple random sampling, difficulties of estimating a population total 265
Simulated tempering for MCMC 337—338 348
Simulation see "Posterior simulation"
Singer, E. 568
Single-parameter models 33—72
Singpurwalla, N. 28
Sinharay, S. 190
Sinsheimer, J. 458
SIR see "Importance resampling"
Skene, A. 152 348
Skilling, J. 66
Skinner, C. 238
Sleight, P. 151
Slice sampling for MCMC 336 348
Slovenia survey 534—539
Slovic, P. 28 568
Small-area estimation 151
Smith, A. 28 66 89 95 150 190—192 309 331 348 411 439 457 480 514 515
Smith, T. 152 192 237 238
Snedecor, G. 387
Snee, R. 413 414
Snell, E. 29
Snijders, T. 411
Snyder, J. 29 385
Software 591—609
Software, Bugs 27 29 151 592—600
Software, debugging 607—608
Software, extended example using Bugs and R 592—607
Software, programming tips 278—282 607—608
Software, R 27 29 600—607
Software, running Bugs from R 592
Software, setting up 591
Software, WinBugs and Bugs 592
Solenberger, P. 539
Sommer, A. 230
Souhami, R. 255
Soules, G. 331
Space-time models 494
Spatial models 493 494
Speed of light example 77 160
Speed of light example, posterior predictive checks 164
Speed, T. 237 439
Speroff, T. 238
Spiegelhalter, D. 29 151 152 191 192 194 255 308 309 608
Spitzer, E. 440
Spline models 515
Sports, football 14—17 29
Sports, golf 515
Stability 200
Stable estimation 111
Stable unit treatment value assumption 201 239
Stallard, E. 66 151
Standard errors 103
Standard normal distribution 578
State-level opinions from national polls 428—430
Statistical packages see "Software"
Statistically significant but not practically significant 176
Statistically significant but not practically significant, regression example 366
Stefanski, L. 514
Stein, C. 150
Stephan, F. 440
Stephens, M. 480
Stepwise ascent 312
Stepwise regression, Bayesian interpretation of 405
Stern, A. 66
Stern, H. 29 190 191 193 440 480 540
Sterne, J. 255
Stevens, M. 568
Stevenson, M. 238
Stigler, S. 65 78 95 255
Stone, M. 66 190
Stratified sampling 209—214
Stratified sampling, hierarchical model 212—214 310
Stratified sampling, pre-election polling 210—214
Strenio, J. 411
Strong ignorability 205
Student-t approximation 315
Student-t distribution 76 576 581
Student-t model 446 451—457
Student-t model, computation using data augmentation 303—304
Student-t model, computation using parameter expansion 304—305
Student-t model, interpretation as mixture 446
Subjectivity 12 14 28 31 257 557 567
Sufficient statistics 42 247
Summary statistics 104
Superpopulation inference 202—203 205 208—209 211 212 216 218—221 241
Superpopulation inference in ANOVA 408—409
Supplemented EM (SEM) algorithm 322—324
Реклама