Авторизация
Поиск по указателям
Gelman A., Carlin J.B., Stern H.S. — Bayesian data analysis
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Bayesian data analysis
Авторы: Gelman A., Carlin J.B., Stern H.S.
Аннотация: Incorporating new and updated information, this second edition of THE bestselling text in Bayesian data analysis continues to emphasize practice over theory, describing how to conceptualize, perform, and critiques statistical analysis from a Bayesian perspective. Changes in the new edition include: added material on how Bayesian methods are connected to other approaches, stronger focus on MCMC, added chapter on further computation topics, more examples, and additional chapters on current models for Bayesian data analysis such as equation models, generalized linear mixed models, and more. The book is an introductory text and a reference for working scientists throughout their professional life.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2nd edition
Год издания: 2004
Количество страниц: 668
Добавлена в каталог: 11.02.2006
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Mixture of exponentials, as example of an ill-posed system 506 516
Model see also "Hierarchical models" "Regression
Model averaging 191 338
Model checking 157—196 265—271
Model checking, adolescent smoking example 172—174
Model checking, election forecasting example 158 394
Model checking, incumbency example 364
Model checking, power transformation example 267
Model checking, pre-election polling 214
Model checking, psychology examples 165—170
Model checking, residual plots 170 503 513
Model checking, SAT coaching 186—190
Model checking, schizophrenia example 477 479
Model checking, speed of light example 160 164
Model checking, toxicology example 512
Model comparison 179—186
Model complexity 181—182
Model complexity, educational testing example 183
Model expansion 177—179
Model expansion, continuous 186 376 449
Model expansion, continuous, schizophrenia example 478—479
Model selection, why we avoid it 180 185—186 371 405
Model, beta-binomial 447
Model, binomial 33 43 97 163
Model, Cauchy 69 446
Model, exponential 55 71
Model, lognormal 266
Model, multinomial 83 95 430—433
Model, multivariate 481—495
Model, multivariate normal 85
Model, negative binomial 446 458
Model, nonlinear 497—516
Model, normal 46 48 50 70 74—83
Model, overdispersed 445—448
Model, Poisson 51 53 70 71
Model, robit 447
Model, robust or nonrobust 448
Model, space-time 494
Model, spatial 493 494
Model, Student-t 303 446 451—457
Model, time series 491—494
Model, underidentified 108
Molenberghs, G. 494
Mollie, A. 151 494
Monitoring convergence of iterative simulation 294—298
Monotone missing data pattern 522 524—525 530—534
Monte Carlo error 277 278 282
Monte Carlo simulation 276—350
Montomoli, C. 66
Morgan, B. 242
Morgan, J. 31
Moroff, S. 569
Morris, C. 113 150 151
Moskowitz, A. 569
Mosteller, F. 150 190 457 458
Mugglin, A. 494
Muller, R. 480 569
Mulligan, C. 30
Multilevel models see "Hierarchical models"
Multimodal posterior distribution 314 337
Multinomial distribution 576 583
Multinomial logistic regression 430
Multinomial model 83 95
Multinomial model for missing data 533—534
Multinomial probit model 440
Multinomial regression 420 430—433
Multinomial regression, parameterization as a Poisson regression 432
Multiparameter models 73—100
Multiple comparisons 152 174 250 253
Multiple imputation 203 519—523
Multiple imputation, combining inferences 522
Multiple imputation, pre-election polling 526—533
Multiple imputation, recoding Census data 261—263
Multiple imputation, Slovenia survey 534—539
Multiple modes 312 319
Multivariate models 481—495
Multivariate models for nonnormal data 488—491
Multivariate models, hierarchical 486—488
Multivariate models, prior distributions 483—486
Multivariate models, prior distributions, noninformative 481 483 529
Multivariate normal distribution 574 578
Multivariate t distribution 315 576
Murray, W. 331 385
Mykland, R. 348
Nachtsheim, C. 385
Nadaram, B. 238
Natural parameter for an exponential family 42
Naylor, J. 348
Neal, R. 308 348 515
Negative binomial distribution 52 150 576 583
Negative binomial distribution as overdispersed alternative to Poisson 446 458
Nelder, J. 191 412 439 514
Neter, J. 385
Neural networks 515
New York population 265—269
Newcomb, S. 77
Newhouse, J. 238
Newman, T. 255
Newton's method for optimization 313
Neyman, J. 237
Nicolae, D. 348
Nisselson, H. 539
No interference between units 201
Nolan, D. 29 66 515
Nolan, T. 238
Non-Bayesian methods 247—252 256 257
Non-Bayesian methods, cross-validation 253
Non-Bayesian methods, difficulties for SAT coaching experiments 139
Nonconjugate prior distributions see "Prior distribution"
Nonidentified parameters 108
Nonignorable and known designs 206
Nonignorable and unknown designs 206
Noninformative prior distribution 61—66 252 597
Noninformative prior distribution for hyperparameters 125 127—129 134 136 137 470
Noninformative prior distribution for many parameters 253
Noninformative prior distribution, binomial model 43 63
Noninformative prior distribution, Bugs software 596
Noninformative prior distribution, difficulties 64
Noninformative prior distribution, Jeffreys' rule 62—63 66 69
Noninformative prior distribution, multivariate normal model 88
Noninformative prior distribution, normal model 74
Noninformative prior distribution, pivotal quantities 64 66
Nonlinear models 497—516
Nonlinear models, golf putting 515
Nonlinear models, mixture of exponentials 516
Nonlinear models, serial dilution assay 498—504
Nonlinear models, toxicology 504—514
nonparametric methods 251
Nonrandomized studies 225
Normal approximation 101—106 314—316
Normal approximation for generalized linear models 422
Normal approximation, bioassay experiment 104
Normal approximation, lower-dimensional 104
Normal approximation, meta-analysis example 146—147
Normal approximation, multimodal 314
Normal distribution 574 578
Normal model 46 48 70 74—83 see "Hierarchical
Normal model, multivariate 85 483—486 523—533
Normal model, power-transformed 195—196 265—269
Normalizing factors 8 345—349
Normand, S. 151 239 411
Notation for data collection 199
Notation for observed and missing data 200 517 521
Novick, M. 28 151 237 411
Nuisance parameters 73
Numerical integration 340—345 348
Numerical integration, Laplace's method 341—342 348
Numerical posterior predictive checks 172—177
Nychka, D. 494
NYPD stops example 425—428
O'Hagan, A. 29 191 457
O'Muircheartaigh, I. 457
Objective assignment of probability distributions, football example 14—17
Objective assignment of probability distributions, record linkage example 17—21
Objectivity of Bayesian inference 14 271
Observational studies 226—231
Observational studies, difficulties with 228
Observational studies, distinguished from experiments 226
Observational studies, incumbency example 359—367
Observed at random 518
Observed data see "Missing data"
Observed information 102
Odds ratio 9 96 145
Offsets for generalized linear models 418
Offsets for generalized linear models, chess example 433
Offsets for generalized linear models, police example 426
Olkin, I. 539
Optimization and the Metropolis algorithm 290
Orchard, T. 331
Ordered logit and probit models 420 430
Ott, J. 349
Oudshoom, C. 539
Outcome variable 353
Outliers, models for 443
Output analysis for iterative simulation 294—299
Overdispersed models 418 439 441 445—448
Overfitting 117 371 421
p-values 162 255 see
p-values, Bayesian (posterior predictive) 162
p-values, classical 162
p-values, interpretation of 175
Packages see "Software"
Paired comparisons with ties 440
Paired comparisons with ties, multinomial model for 431
Parameter expansion for ANOVA computation 407
Parameter expansion for EM algorithm 324 331
Parameter expansion for hierarchical regression 404 407
Parameter expansion, election forecasting example 404
Parameter expansion, programming in Bugs 597—598
Parameter expansion, programming in R 606—607
Parameters 5
Parameters, effective number of 181
Parameters, frequentist distinction between parameters and predictions 249 411
Park, D. 440
Parmar, M. 255
Parmigiani, G. 152 412 568
Partial pooling 133
Path sampling 344—345 348
Pauker, S. 569
Pauler, D. 28 191
Pearl, J. 151 237
Pedlow, S. 331
Pellom, A. 66 151
Pendleton, B. 348
Perchloroethylene 504
Perfect simulation for MCMC 340 348
Pericchi, L. 195
Permutation tests 251
Personal (subjective) probability 14 567—568
Peto, R. 151
Petrie, T. 331
Pettit, A. 349
Pharmacokinetics 260
Pivotal quantities 64 66 77
Plackett, R. 412
Plummer, M. 609
Point estimation 103 111 256
Poison, N. 309
Poisson distribution 576 582
Poisson model 51 70 71
Poisson model, parameterized in terms of rate and exposure 53
Poisson regression 99 417 441
Poisson regression for multinomial data 431
Poisson regression, hierarchical 425—428
Pole, A. 494
Police stops, example of hierarchical Poisson regression 425—428
Pooling, partial 133 271
Population distribution 117
Posterior distribution 3 8
Posterior distribution as compromise 36—37 47 67
Posterior distribution, calculating marginal 81
Posterior distribution, improper 64 109 154
Posterior distribution, joint 73
Posterior distribution, marginal 73
Posterior distribution, normal approximation see "Normal approximation"
Posterior distribution, predictive 8
Posterior distribution, summaries of 37
Posterior distribution, use as prior distribution when new data arrive 11 561
Posterior intervals 4 38 276
Posterior modes 312—314
Posterior modes, approximate conditional posterior density using marginal modes 324
Posterior modes, conditional maximization (stepwise ascent) 312
Posterior modes, EM algorithm for marginal posterior modes 317—324 331
Posterior modes, EM algorithm for marginal posterior modes, ECM and ECME algorithms 321 471 526
Posterior modes, EM algorithm for marginal posterior modes, examples 319 328 379 455 471 537
Posterior modes, EM algorithm for marginal posterior modes, generalized EM algorithm 318
Posterior modes, EM algorithm for marginal posterior modes, marginal posterior density increases at each step 329
Posterior modes, EM algorithm for marginal posterior modes, missing data 521 523
Posterior modes, EM algorithm for marginal posterior modes, SEM algorithm 538
Posterior modes, EM algorithm for marginal posterior modes, SEM and SECM algorithms 322—324
Posterior modes, joint mode, problems with 333
Posterior modes, joint mode, problems with, Newton's method 313
Posterior predictive checks 159—177 253 see
Posterior predictive checks, graphical 165—172
Posterior predictive checks, numerical 172—177
Posterior predictive distribution 8
Posterior predictive distribution, hierarchical models 125 137
Posterior predictive distribution, linear regression 358
Posterior predictive distribution, missing data 203
Posterior predictive distribution, mixture model 476
Posterior predictive distribution, multivariate normal model 86
Posterior predictive distribution, normal model 77
Posterior predictive distribution, speed of light example 160
Posterior simulation 25—26 276—350 see
Posterior simulation, computation in R and Bugs 591—608
Posterior simulation, direct 283—285
Posterior simulation, grid approximation 91—92 284
Posterior simulation, hierarchical models 130
Posterior simulation, how many draws are needed 277 278 282
Posterior simulation, rejection sampling 284
Posterior simulation, simple problems 93—94
Posterior simulation, two-dimensional 82 92 99
Posterior simulation, using inverse cdf 25—26
Poststratification 228 428—430
Potential scale reduction factor 297
Pourahmadi, M. 494
Power transformations 195—196 265—269
Pratt, J. 28 113 237
Pre-election polling 83 95 242—244 428—430
Pre-election polling in Slovenia 534—539
Pre-election polling, missing data 526—539
Pre-election polling, state-level opinions from national polls 428—430
Pre-election polling, stratified sampling 210—214
Precision (inverse of variance) 47
Precision (inverse of variance), used by Bugs software 592
Prediction see "Posterior predictive distribution"
Predictive simulation 31
Predictor variables see "Regression models explanatory
Predictors, including even if not 'statistically significant' 263 546—552
Predictors, selecting 254
Pregibon, D. 28 439
Press, W. 331 348 584
Price, P. 66 569
Principal stratification 229—231
Prior distribution 7
Prior distribution for covariance matrices 483—486
Prior distribution for covariance matrices, noninformative 481 483 529
Prior distribution for multivariate models 483—486
Prior distribution, conjugate 40—43 66
Prior distribution, conjugate, binomial model 40—41 45
Реклама