Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Gelman A., Carlin J.B., Stern H.S. — Bayesian data analysis
Gelman A., Carlin J.B., Stern H.S. — Bayesian data analysis



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Bayesian data analysis

Авторы: Gelman A., Carlin J.B., Stern H.S.

Аннотация:

Incorporating new and updated information, this second edition of THE bestselling text in Bayesian data analysis continues to emphasize practice over theory, describing how to conceptualize, perform, and critiques statistical analysis from a Bayesian perspective. Changes in the new edition include: added material on how Bayesian methods are connected to other approaches, stronger focus on MCMC, added chapter on further computation topics, more examples, and additional chapters on current models for Bayesian data analysis such as equation models, generalized linear mixed models, and more. The book is an introductory text and a reference for working scientists throughout their professional life.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 2004

Количество страниц: 668

Добавлена в каталог: 11.02.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Mixture of exponentials, as example of an ill-posed system      506 516
Model      see also "Hierarchical models" "Regression
Model averaging      191 338
Model checking      157—196 265—271
Model checking, adolescent smoking example      172—174
Model checking, election forecasting example      158 394
Model checking, incumbency example      364
Model checking, power transformation example      267
Model checking, pre-election polling      214
Model checking, psychology examples      165—170
Model checking, residual plots      170 503 513
Model checking, SAT coaching      186—190
Model checking, schizophrenia example      477 479
Model checking, speed of light example      160 164
Model checking, toxicology example      512
Model comparison      179—186
Model complexity      181—182
Model complexity, educational testing example      183
Model expansion      177—179
Model expansion, continuous      186 376 449
Model expansion, continuous, schizophrenia example      478—479
Model selection, why we avoid it      180 185—186 371 405
Model, beta-binomial      447
Model, binomial      33 43 97 163
Model, Cauchy      69 446
Model, exponential      55 71
Model, lognormal      266
Model, multinomial      83 95 430—433
Model, multivariate      481—495
Model, multivariate normal      85
Model, negative binomial      446 458
Model, nonlinear      497—516
Model, normal      46 48 50 70 74—83
Model, overdispersed      445—448
Model, Poisson      51 53 70 71
Model, robit      447
Model, robust or nonrobust      448
Model, space-time      494
Model, spatial      493 494
Model, Student-t      303 446 451—457
Model, time series      491—494
Model, underidentified      108
Molenberghs, G.      494
Mollie, A.      151 494
Monitoring convergence of iterative simulation      294—298
Monotone missing data pattern      522 524—525 530—534
Monte Carlo error      277 278 282
Monte Carlo simulation      276—350
Montomoli, C.      66
Morgan, B.      242
Morgan, J.      31
Moroff, S.      569
Morris, C.      113 150 151
Moskowitz, A.      569
Mosteller, F.      150 190 457 458
Mugglin, A.      494
Muller, R.      480 569
Mulligan, C.      30
Multilevel models      see "Hierarchical models"
Multimodal posterior distribution      314 337
Multinomial distribution      576 583
Multinomial logistic regression      430
Multinomial model      83 95
Multinomial model for missing data      533—534
Multinomial probit model      440
Multinomial regression      420 430—433
Multinomial regression, parameterization as a Poisson regression      432
Multiparameter models      73—100
Multiple comparisons      152 174 250 253
Multiple imputation      203 519—523
Multiple imputation, combining inferences      522
Multiple imputation, pre-election polling      526—533
Multiple imputation, recoding Census data      261—263
Multiple imputation, Slovenia survey      534—539
Multiple modes      312 319
Multivariate models      481—495
Multivariate models for nonnormal data      488—491
Multivariate models, hierarchical      486—488
Multivariate models, prior distributions      483—486
Multivariate models, prior distributions, noninformative      481 483 529
Multivariate normal distribution      574 578
Multivariate t distribution      315 576
Murray, W.      331 385
Mykland, R.      348
Nachtsheim, C.      385
Nadaram, B.      238
Natural parameter for an exponential family      42
Naylor, J.      348
Neal, R.      308 348 515
Negative binomial distribution      52 150 576 583
Negative binomial distribution as overdispersed alternative to Poisson      446 458
Nelder, J.      191 412 439 514
Neter, J.      385
Neural networks      515
New York population      265—269
Newcomb, S.      77
Newhouse, J.      238
Newman, T.      255
Newton's method for optimization      313
Neyman, J.      237
Nicolae, D.      348
Nisselson, H.      539
No interference between units      201
Nolan, D.      29 66 515
Nolan, T.      238
Non-Bayesian methods      247—252 256 257
Non-Bayesian methods, cross-validation      253
Non-Bayesian methods, difficulties for SAT coaching experiments      139
Nonconjugate prior distributions      see "Prior distribution"
Nonidentified parameters      108
Nonignorable and known designs      206
Nonignorable and unknown designs      206
Noninformative prior distribution      61—66 252 597
Noninformative prior distribution for hyperparameters      125 127—129 134 136 137 470
Noninformative prior distribution for many parameters      253
Noninformative prior distribution, binomial model      43 63
Noninformative prior distribution, Bugs software      596
Noninformative prior distribution, difficulties      64
Noninformative prior distribution, Jeffreys' rule      62—63 66 69
Noninformative prior distribution, multivariate normal model      88
Noninformative prior distribution, normal model      74
Noninformative prior distribution, pivotal quantities      64 66
Nonlinear models      497—516
Nonlinear models, golf putting      515
Nonlinear models, mixture of exponentials      516
Nonlinear models, serial dilution assay      498—504
Nonlinear models, toxicology      504—514
nonparametric methods      251
Nonrandomized studies      225
Normal approximation      101—106 314—316
Normal approximation for generalized linear models      422
Normal approximation, bioassay experiment      104
Normal approximation, lower-dimensional      104
Normal approximation, meta-analysis example      146—147
Normal approximation, multimodal      314
Normal distribution      574 578
Normal model      46 48 70 74—83 see "Hierarchical
Normal model, multivariate      85 483—486 523—533
Normal model, power-transformed      195—196 265—269
Normalizing factors      8 345—349
Normand, S.      151 239 411
Notation for data collection      199
Notation for observed and missing data      200 517 521
Novick, M.      28 151 237 411
Nuisance parameters      73
Numerical integration      340—345 348
Numerical integration, Laplace's method      341—342 348
Numerical posterior predictive checks      172—177
Nychka, D.      494
NYPD stops example      425—428
O'Hagan, A.      29 191 457
O'Muircheartaigh, I.      457
Objective assignment of probability distributions, football example      14—17
Objective assignment of probability distributions, record linkage example      17—21
Objectivity of Bayesian inference      14 271
Observational studies      226—231
Observational studies, difficulties with      228
Observational studies, distinguished from experiments      226
Observational studies, incumbency example      359—367
Observed at random      518
Observed data      see "Missing data"
Observed information      102
Odds ratio      9 96 145
Offsets for generalized linear models      418
Offsets for generalized linear models, chess example      433
Offsets for generalized linear models, police example      426
Olkin, I.      539
Optimization and the Metropolis algorithm      290
Orchard, T.      331
Ordered logit and probit models      420 430
Ott, J.      349
Oudshoom, C.      539
Outcome variable      353
Outliers, models for      443
Output analysis for iterative simulation      294—299
Overdispersed models      418 439 441 445—448
Overfitting      117 371 421
p-values      162 255 see
p-values, Bayesian (posterior predictive)      162
p-values, classical      162
p-values, interpretation of      175
Packages      see "Software"
Paired comparisons with ties      440
Paired comparisons with ties, multinomial model for      431
Parameter expansion for ANOVA computation      407
Parameter expansion for EM algorithm      324 331
Parameter expansion for hierarchical regression      404 407
Parameter expansion, election forecasting example      404
Parameter expansion, programming in Bugs      597—598
Parameter expansion, programming in R      606—607
Parameters      5
Parameters, effective number of      181
Parameters, frequentist distinction between parameters and predictions      249 411
Park, D.      440
Parmar, M.      255
Parmigiani, G.      152 412 568
Partial pooling      133
Path sampling      344—345 348
Pauker, S.      569
Pauler, D.      28 191
Pearl, J.      151 237
Pedlow, S.      331
Pellom, A.      66 151
Pendleton, B.      348
Perchloroethylene      504
Perfect simulation for MCMC      340 348
Pericchi, L.      195
Permutation tests      251
Personal (subjective) probability      14 567—568
Peto, R.      151
Petrie, T.      331
Pettit, A.      349
Pharmacokinetics      260
Pivotal quantities      64 66 77
Plackett, R.      412
Plummer, M.      609
Point estimation      103 111 256
Poison, N.      309
Poisson distribution      576 582
Poisson model      51 70 71
Poisson model, parameterized in terms of rate and exposure      53
Poisson regression      99 417 441
Poisson regression for multinomial data      431
Poisson regression, hierarchical      425—428
Pole, A.      494
Police stops, example of hierarchical Poisson regression      425—428
Pooling, partial      133 271
Population distribution      117
Posterior distribution      3 8
Posterior distribution as compromise      36—37 47 67
Posterior distribution, calculating marginal      81
Posterior distribution, improper      64 109 154
Posterior distribution, joint      73
Posterior distribution, marginal      73
Posterior distribution, normal approximation      see "Normal approximation"
Posterior distribution, predictive      8
Posterior distribution, summaries of      37
Posterior distribution, use as prior distribution when new data arrive      11 561
Posterior intervals      4 38 276
Posterior modes      312—314
Posterior modes, approximate conditional posterior density using marginal modes      324
Posterior modes, conditional maximization (stepwise ascent)      312
Posterior modes, EM algorithm for marginal posterior modes      317—324 331
Posterior modes, EM algorithm for marginal posterior modes, ECM and ECME algorithms      321 471 526
Posterior modes, EM algorithm for marginal posterior modes, examples      319 328 379 455 471 537
Posterior modes, EM algorithm for marginal posterior modes, generalized EM algorithm      318
Posterior modes, EM algorithm for marginal posterior modes, marginal posterior density increases at each step      329
Posterior modes, EM algorithm for marginal posterior modes, missing data      521 523
Posterior modes, EM algorithm for marginal posterior modes, SEM algorithm      538
Posterior modes, EM algorithm for marginal posterior modes, SEM and SECM algorithms      322—324
Posterior modes, joint mode, problems with      333
Posterior modes, joint mode, problems with, Newton's method      313
Posterior predictive checks      159—177 253 see
Posterior predictive checks, graphical      165—172
Posterior predictive checks, numerical      172—177
Posterior predictive distribution      8
Posterior predictive distribution, hierarchical models      125 137
Posterior predictive distribution, linear regression      358
Posterior predictive distribution, missing data      203
Posterior predictive distribution, mixture model      476
Posterior predictive distribution, multivariate normal model      86
Posterior predictive distribution, normal model      77
Posterior predictive distribution, speed of light example      160
Posterior simulation      25—26 276—350 see
Posterior simulation, computation in R and Bugs      591—608
Posterior simulation, direct      283—285
Posterior simulation, grid approximation      91—92 284
Posterior simulation, hierarchical models      130
Posterior simulation, how many draws are needed      277 278 282
Posterior simulation, rejection sampling      284
Posterior simulation, simple problems      93—94
Posterior simulation, two-dimensional      82 92 99
Posterior simulation, using inverse cdf      25—26
Poststratification      228 428—430
Potential scale reduction factor      297
Pourahmadi, M.      494
Power transformations      195—196 265—269
Pratt, J.      28 113 237
Pre-election polling      83 95 242—244 428—430
Pre-election polling in Slovenia      534—539
Pre-election polling, missing data      526—539
Pre-election polling, state-level opinions from national polls      428—430
Pre-election polling, stratified sampling      210—214
Precision (inverse of variance)      47
Precision (inverse of variance), used by Bugs software      592
Prediction      see "Posterior predictive distribution"
Predictive simulation      31
Predictor variables      see "Regression models explanatory
Predictors, including even if not 'statistically significant'      263 546—552
Predictors, selecting      254
Pregibon, D.      28 439
Press, W.      331 348 584
Price, P.      66 569
Principal stratification      229—231
Prior distribution      7
Prior distribution for covariance matrices      483—486
Prior distribution for covariance matrices, noninformative      481 483 529
Prior distribution for multivariate models      483—486
Prior distribution, conjugate      40—43 66
Prior distribution, conjugate, binomial model      40—41 45
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте