Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Gelman A., Carlin J.B., Stern H.S. — Bayesian data analysis
Gelman A., Carlin J.B., Stern H.S. — Bayesian data analysis



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Bayesian data analysis

Авторы: Gelman A., Carlin J.B., Stern H.S.

Аннотация:

Incorporating new and updated information, this second edition of THE bestselling text in Bayesian data analysis continues to emphasize practice over theory, describing how to conceptualize, perform, and critiques statistical analysis from a Bayesian perspective. Changes in the new edition include: added material on how Bayesian methods are connected to other approaches, stronger focus on MCMC, added chapter on further computation topics, more examples, and additional chapters on current models for Bayesian data analysis such as equation models, generalized linear mixed models, and more. The book is an introductory text and a reference for working scientists throughout their professional life.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 2004

Количество страниц: 668

Добавлена в каталог: 11.02.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Importance ratio      284
Importance resampling (sampling-importance resampling, SIR)      316 331 332
Importance resampling (sampling-importance resampling, SIR), examples      450 452
Importance resampling (sampling-importance resampling, SIR), unreliability of      316
Importance resampling (sampling-importance resampling, SIR), why you should sample without replacement      316
Importance sampling      342 348
Importance sampling for marginal posterior densities      343 450
Importance sampling, bridge sampling      344 348
Importance sampling, path sampling      344—345 348
Importance sampling, unreliability of      343
Improper posterior distributions      see "Posterior distribution"
Improper prior distribution      see "Prior distribution"
Imputation      see "Multiple imputation"
Inclusion indicator      201 518
Incumbency advantage      359—367
Incumbency advantage, two variance parameters      377 381
Indicator variables      370
Indicator variables for mixture models      463
Inference, finite-population and superpopulation      203 216 218
Inference, finite-population and superpopulation in ANOVA      408—409
Inference, finite-population and superpopulation, completely randomized experiments      219—221 241
Inference, finite-population and superpopulation, pre-election polling      211—212
Inference, finite-population and superpopulation, simple random sampling      208—209
Information matrix      102 107
Informative prior distributions      see "Prior distribution"
Institutional decision analysis      567—568
Instrumental variables      230—231
Intention-to-treat effect      230 231
Interactions in loglinear models      434
Interactions in regression models      370 549
Internet connect times      409—411
Intraclass correlation      391
Inverse probability      65
Inverse-$\chi^{2}$ distribution      574 580
Inverse-gamma distribution      50 574 580
Inverse-Wishart distribution      87 574 581
Inverse-Wishart distribution, other models for covariance matrices      483—486
Iterative proportional fitting (IPF)      435—437
Iterative simulation      283—310 335—350
Iterative weighted least squares (EM for robust regression)      455
Iversen, E.      569
Jackknife      251
Jackman, S.      440
Jackson, P.      151 411
Jacobian      24
James, W.      150
James, W.H.      66
Jaynes, E.      28 29 66 68 113 494
Jeffreys' rule for noninformative prior distributions      62—63 66 69
Jeffreys, H.      28 66 68
Jeliazkov, I.      191
Jenkins, G.      494
Jiang, J.      272 514
Jittering      15 16 29
Johnson, N.      584
Johnson, V.      190 440
Johnson, W.      439
Johnstone, I.      66
Joint posterior distribution      73
Jones, D.      494
Kadane, J.      191 238 348
Kahneman, D.      28 568
Kaldor, J.      150
Karim, M.      439
Kass, R.      28 66 191 308 348 493 515
Katz, J.      30 385
Keller, J.      29
Kelly, A.      569
Kempt home, O.      411
Kennard, R.      412
Kennedy, A.      348
Kent, J.      95
King, G.      30 385 395 411 479 540
Kirby, A.      309
Kish, L.      193 241 539
Kiss, A.      440
Kleiner, B.      29
Knauss, W.      238
Knook, D.      539
Knuiman, M.      439
Kohn, R.      494
Kolaczyk, E.      494
Kong, A.      348
Kotz, S.      584
Krantz, D.      255 569
Kreft, I.      411
Kullback — Leibler information      107 586—588
Kullback — Leibler information, connection to deviance      181 191
Kullback, S.      589
Kutner, M.      385
Laird, N.      150 331 457 479
Landis, J.      539
Landwehr, J.      439
Lange, K.      457 458
Langevin updating for MCMC      336
Laplace's method for numerical integration      341—342 348
Laplace, P.      34
Laplace, R.      34 589
Large-sample inference      101—114
Larizza, C.      113
Latent continuous models for discrete data      419
Latin square experiment      220—221
Laud, P.      191
Lauritzen, S.      151
Lavine, M.      29
LD50      92—93
Le Cam, L.      589
Learner, E.      191 412
Lee, P.      68
Lehmann, E.      255 256
Leibler, R.      589
Leonard, T.      151 493
Lepkowski, J.      539
Lewis, C.      151
Lewis, J.      151
Leyland, A.      411
Li, B.      348
Liang, K.      439
Life expectancy, quality-adjusted      553
Likelihood      9—11
Likelihood principle      9 28
Likelihood principle, misplaced appeal to      198
Likelihood, complete-data      201
Likelihood, observed-data      202
Lin, C.      569
Linde, A.      191 194
Lindley, D.      27 28 30 113 151 237 411
Lindman, H.      113 237
Linear regression      353—387 see
Linear regression, analysis of residuals      364
Linear regression, classical      355
Linear regression, conjugate prior distribution      382—385
Linear regression, conjugate prior distribution, as augmented data      383
Linear regression, correlated errors      372—375
Linear regression, errors in x and y      386 387
Linear regression, fitting two variance parameters      377
Linear regression, heteroscedasticity      372—382
Linear regression, heteroscedasticity, parametric model for      376
Linear regression, hierarchical      389—414
Linear regression, hierarchical, interpretation as a single linear regression      399
Linear regression, incumbency example      359—367
Linear regression, known covariance matrix      373
Linear regression, model checking      364
Linear regression, multivariate      481—482
Linear regression, multivariate, prior distributions      483—486
Linear regression, posterior simulation      357
Linear regression, prediction      358 367
Linear regression, prediction, with correlations      374
Linear regression, residuals      359 365
Linear regression, robust      455—457
Linear regression, several variance parameters      382
Linear regression, Student-t errors      455—457
Linear regression, weighted      376
Linear transformation, with Gibbs sampler for hierarchical regression      403
Link function      416 418
Little, R.      237 238 331 457 539
Little, T.      440
Liu, C.      309 331 348 457 458 539 540
Liu, J.      308 309 331 348 412
Location and scale parameters      64
Logistic regression      88—93 417
Logistic regression for multinomial data      430
Logistic regression, hierarchical      428—430
Logistic regression, latent-data interpretation      419
Logit (logistic, log-odds) transformation      24 146
Loglinear models      433—437
Loglinear models, prior distributions      434
Lognormal distribution      578
Lohr, S.      241
Longford, N.      411
Longitudinal data, modeling covariance matrices      485
Longitudinal data, survey of adolescent smoking      214—216
Louis, T.      28 66 494
Luce, R.      568
Lunn, D.      29 151 191 309 608
Lynn, J.      238
Mack, S.      440 539
Madigan, D.      191 412
Madow, W.      539
Makov, U.      480
Malec, D.      151
Malick, B.      515
Mallows, C.      28 191
Manton, K.      66 151
Map, as used in model checking      159
Maps of cancer rates      55
Maps, artifacts in      55—66
MAR (missing at random)      204 518
MAR (missing at random), a more reasonable assumption than MCAR      519
Mardia, K.      95
Marginal and conditional means and variances      23 142
Marginal posterior distribution      73 128 129 275
Marginal posterior distribution, approximation      324—325
Marginal posterior distribution, computation for the educational testing example      600—601
Marginal posterior distribution, computation for the survey incentives example      548
Marginal posterior distribution, computation using importance sampling      343 450
Marginal posterior distribution, EM algorithm      317—324
Markov chain      286
Markov Chain Monte Carlo (MCMC)      285—310 335—350
Markov chain Monte Carlo (MCMC), adaptive algorithms      307
Markov chain Monte Carlo (MCMC), assessing convergence      294—298
Markov chain Monte Carlo (MCMC), assessing convergence, between/within variances      296
Markov chain Monte Carlo (MCMC), assessing convergence, simple example      297
Markov chain Monte Carlo (MCMC), auxiliary variables      335—339 348
Markov chain Monte Carlo (MCMC), burn-in      295
Markov chain Monte Carlo (MCMC), data augmentation      303
Markov chain Monte Carlo (MCMC), efficiency      291 302—307
Markov chain Monte Carlo (MCMC), Gibbs sampler      287—289 292—294 308—309
Markov chain Monte Carlo (MCMC), Gibbs sampler, efficiency      302—305
Markov chain Monte Carlo (MCMC), Gibbs sampler, examples      288 300 380 400 449 474 538
Markov chain Monte Carlo (MCMC), Gibbs sampler, picture of      288
Markov chain Monte Carlo (MCMC), Gibbs sampler, programming in R      601—608
Markov chain Monte Carlo (MCMC), hybrid (Hamiltonian) Monte Carlo      335—336 348
Markov chain Monte Carlo (MCMC), inference      294—298
Markov chain Monte Carlo (MCMC), Langevin updating      336
Markov chain Monte Carlo (MCMC), Metropolis algorithm      289—292 308—309
Markov chain Monte Carlo (MCMC), Metropolis algorithm, efficient jumping rules      305—307
Markov chain Monte Carlo (MCMC), Metropolis algorithm, examples      290 301—302
Markov chain Monte Carlo (MCMC), Metropolis algorithm, generalizations      335—340
Markov chain Monte Carlo (MCMC), Metropolis algorithm, picture of      286
Markov chain Monte Carlo (MCMC), Metropolis algorithm, programming in R      604—606
Markov chain Monte Carlo (MCMC), Metropolis algorithm, relation to optimization      290
Markov Chain Monte Carlo (MCMC), Metropolis — Hastings algorithm      291 308—310
Markov chain Monte Carlo (MCMC), Metropolis — Hastings algorithm, generalizations      335—340
Markov chain Monte Carlo (MCMC), multiple sequences      294
Markov chain Monte Carlo (MCMC), output analysis      294—299
Markov chain Monte Carlo (MCMC), overdispersed starting points      295
Markov chain Monte Carlo (MCMC), perfect simulation      340 348
Markov chain Monte Carlo (MCMC), recommended strategy      307 308
Markov chain Monte Carlo (MCMC), regeneration      340 348
Markov chain Monte Carlo (MCMC), restarting methods      340 348
Markov Chain Monte Carlo (MCMC), reversible jump sampling      338—339 348
Markov chain Monte Carlo (MCMC), simulated tempering      337—338 348
Markov chain Monte Carlo (MCMC), slice sampling      336 348
Markov chain Monte Carlo (MCMC), thinning      295
Markov chain Monte Carlo (MCMC), trans-dimensional      338—339 348
Marquardt, D.      413 414
Martin, A.      440 609
Martz, H.      29
Matrix and vector notation      5
Maximum entropy      66 494
Maximum likelihood      247
MCAR (missing completely at random)      518
McClellan, M.      238
McCullagh, P.      348 439 514
McCulloch, R.      191 412 493 494 515
McGonagle, K.      568
McNeil, A.      309
McNeil, B.      238
Measurement error models, hierarchical      151
Measurement error models, linear regression with errors in x and y      387
Measurement error models, nonlinear      498—504
Medical screening, example of decision analysis      552—555
Melmon, K.      515
Meng, C.      151
Meng, X.      190 191 193 309 331 348 440 457 480 493 539
Mengersen, K.      348 494
Meta-analysis      151 156
Meta-analysis, beta-blockers study      145—150 488—491
Meta-analysis, bivariate model      488—491
Meta-analysis, goals of      147
Meta-analysis, survey incentives study      544—550
Metropolis algorithm      289—292 308—309
Metropolis algorithm, efficient jumping rules      305—307
Metropolis algorithm, examples      290 301—302
Metropolis algorithm, generalizations      335—340
Metropolis algorithm, picture of      286
Metropolis algorithm, programming in R      604—606
Metropolis algorithm, relation to optimization      290
Metropolis — Hastings algorithm      291 308—310
Metropolis — Hastings algorithm, generalizations      335—340
Metropolis, N.      308
Meulders, M.      190
Milliff, R.      494
Minimal analysis      222
Missing at random (MAR)      204 518
Missing at random (MAR), a more reasonable assumption than MCAR      519
Missing at random (MAR), a slightly misleading phrase      204
Missing completely at random (MCAR)      518
Missing data      517—540
Missing data and EM algorithm      521 523
Missing data, intentional      199
Missing data, monotone pattern      522 524—525 530—534
Missing data, multinomial model      533—534
Missing data, multivariate normal model      523—526
Missing data, multivariate t model      525
Missing data, notation      200 517—519 521
Missing data, paradigm for data collection      199
Missing data, Slovenia survey      534—539
Missing data, unintentional      199 207 517
Mixed-effects model      391
Mixture models      23 153 463—480
Mixture models, computation      467—468
Mixture models, continuous      464
Mixture models, discrete      463
Mixture models, exponential distributions      516
Mixture models, hierarchical      470
Mixture models, model checking      477 479
Mixture models, prediction      476
Mixture models, schizophrenia example      468—479
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте