Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Sutton R.S., Barto A.G. — Reinforcement Learning
Sutton R.S., Barto A.G. — Reinforcement Learning



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Reinforcement Learning

Àâòîðû: Sutton R.S., Barto A.G.

Àííîòàöèÿ:

In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1998

Êîëè÷åñòâî ñòðàíèö: 322

Äîáàâëåíà â êàòàëîã: 10.12.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
"Steps Toward Artificial Intelligence" paper (Minsky)      18 21 22
$\lambda$-return      170—113 189—190 191 198
$\lambda$-return algorithm      171—112 176—180
Absorbing slate      60
Access-control queuing example      154—155 157 160
Accumulating traces or Accumulate-trace methods      173 176 see
Accumulating traces vs. replacing traces      186—189 221(fig.)
Acrobot: case study      270—274
Action nodes      68
Action preferences      152 185
Action preferences in the n-armed bandit problem      41—12 43 44
Action values      69 72—14 116
Action values in the n-armed bandit problem      26 27—28 48
Action-value functions      69 84 257
Action-value functions and function approximation      210—211
Action-value functions and Monte Carlo methods      116—118
Action-value functions and TD learning      145—146 148 152 154
Action-value functions, optimal      75 78 84
Action-value methods      27—30
Actions      51—52
Actions in the n-armed bandit problem      26
Actor-critic methods      22 41 151—153 159—160
Actor-critic methods and Dyna      237(fig.)
Actor-critic methods, eligibility traces for      185—186 192
Afterstates      156—157
Agent      5 51—55
AI      see "Artificial intelligence"
Andreae, John      19 84 109
Animal learning psychology      see "Psychology and reinforcement learning"
Approximation      80—81
Artificial intelligence (AI)      3 5
Artificial intelligence (AI) and DP      109
Artificial intelligence (AI) and reinforcement learning      15 18—23 83
Associative learning      18
Associative memory network      225
Associative reinforcement learning      49
Associative reward-penalty algorithm      226
Associative search      45—46 49
Asynchronous dynamic programming      103—104 107—108 110 254
Average-reward case      see "Undiscounted continuing tasks"
Averagers      219
Backgammon: program for      see "TD-Gammon"
Backup diagrams      71 191
Backup diagrams for DP      70—71 76—77
Backup diagrams for half-backups      74
Backup diagrams for Monte Carlo methods      115 117
Backup diagrams for n-step TD methods      165
Backup diagrams for one-step methods      243
Backup diagrams for one-step Q-learning      150
Backup diagrams for Q($\lambda$)      183 185
Backup diagrams for Samuel's checker player      269
Backup diagrams for Sarsa($\lambda$)      180
Backup diagrams for TD($\lambda$)      170
Backup diagrams for TD(0)      135
Backup diagrams, complex      169
Backups      12 71
Backups in dynamic programming      91
Backups in heuristic search      251—253
Backups in Samuel's checker player      268—269
Backups, distribution of      195—196 201 216—218 246—249 251 252 254
Backups, full vs. sample      242—246
Backups, function approximation and      194—195 196 201
Backups, n-step      164—165 166 169—173
Backups, prioritized sweeping and      239—240
Backups, trajectory sampling and      248—250
Backward view of eligibility traces      163 175(fig.) 191 192
Backward view of eligibility traces, equivalence with forward view      176—179
Backward view of eligibility traces, in Q($\lambda$)      182
Backward view of eligibility traces, in TD($\lambda$)      173—178
Backward view of eligibility traces, with function approximation      199 211
Baird's counterexample      216 218 220 224
Bandit problems      48 128 see
Batch updating or Batch training      141—144 159
Bellman equations      16 85 90
Bellman equations and backups      108
Bellman equations and DP      101 108
Bellman equations for $Q^{*}$      76
Bellman equations for $Q^{\pi}$      72
Bellman equations for $V^{*}$      76
Bellman equations for $V^{\pi}$      70
Bellman equations, solving the      77—80
Bellman error      219—220 224
Bellman, Richard      16 21 48 49 85 109
Binary bandit tasks      33—36 46 49
Binary features      202 205
Binary features vs. radial basis functions      208
Bioreactor: example      54 83
Blackjack: examples      112—114 121 131
Blocking maze: example      236—237
Boltzmann distribution      30
Bootstrapping      109
Bootstrapping, and DP      109
Bootstrapping, and eligibility traces      220—221
Bootstrapping, and function approximation      195 199 201 216—222 222—223
Bootstrapping, and Monte Carlo methods      115
Bootstrapping, and TD learning      134 138
Bootstrapping, assessment of      139—142 220—223 224
Boxes      19 131 223
Branching factor      245
Breakfast: example      6—7 23
Bucket brigade      159
Car rental: example      98—100 157
Cellular telephones: dynamic channel allocation in      279—283
Certainty-equivalence estimate      144—145 159
Checkers      56 62 251—252 267—270
Checkers player: Samuel's      109 225 261 267—270
Chess      6—7 21 56 80 84 156 226
Classical conditioning models      22
Classifier systems      20 22 225
Cliff walking: example      149 150(fig.)
CMAC      see "Tile coding"
Coarse coding      202—205 208
Complete knowledge      17 82
Complex backups      169
Contingency space      34(fig.) 49
Continuing tasks      58 60—61 83
Continuous action      89 153 193 211 226
Continuous state      63 85 89 109 193 202 205 215
Continuous time      52 85 275 276—277
Credit assignment      18 163 192
Critic      20 151—152 159
Curse of dimensionality      16 107 207
Decision-tree methods      197 226
Delayed reward      4 87 191
Direct reinforcement learning (Direct RL)      230—234 254
Dirichlet problem      131
Discount-rate parameter      58 277
Discounting      58—59 61 257
Distribution models      227—228 244
DP      see "Dynamic programming"
Draw poker: example      64—65
Driving home: example      135—138
Driving: example      55
Dual control      48
Dyna agents      230—238 254 258
Dyna agents vs. prioritized sweeping      240—241
Dyna agents, architecture      232
Dyna agents, Dyna-AC      257 244
Dyna agents, Dyna-Q      230—237
Dyna agents, Dyna-Q+      237 238
Dyna maze      233—235 241
Dynamic channel allocation: in cellular telephone systems      279—283
Dynamic programming (DP)      16—17 49 89—110
Dynamic programming (DP) and artificial intelligence      109
Dynamic programming (DP) vs. Monte Carlo methods      111—119 129—131 133 256
Dynamic programming (DP), backup diagrams for      70—71 76—77
Dynamic programming (DP), efficiency of      107—108
Dynamic programming (DP), function approximation and      194 216—219 222 224 225
Dynamic programming (DP), incremental      109
Dynamic programming (DP), reinforcement learning and      9 16—17 23 89 109
Dynamic programming (DP), temporal-difference learning and      133—135 138 159 256
Elevator dispatching: case study      274—279
Eligibility traces      163—192 see "Replacing
Eligibility traces and Q-learning      182—185 192
Eligibility traces and Sarsa      179—181 192
Eligibility traces for actor-critic methods      185—186 192
Eligibility traces with variable $\lambda$      189—190 192
Eligibility traces, performance with      221(fig.)
Environment      3 51
Environment and agent      51—44
Environment, Markov property and      63
Environment, models of      227
Episodes, episodic tasks      58—61 83
Error reduction property      166
Estimator algorithms      48
Evaluation vs. instruction      25 31—36
Evaluative feedback      259
Evolution      9 18
Evolutionary methods      9 11 13 20 225 228
Experience      111 228
Experience replay      287
Exploration-exploitation dilemma      4—5 130 145 236—238
Exploration-exploitation dilemma in the n-armed bandit problem      26—27 30 46—48 49
Exploratory moves or actions      11 12(fig.) 15 182—184
Exploring starts      117 120 122 130
Farley and Clark      18 224
features      200—213 225
Forward view of eligibility traces      163 171(fig.) 191
Forward view of eligibility traces in Q($\lambda$)      182—185
Forward view of eligibility traces in TD($\lambda$)      169—173
Forward view of eligibility traces with function approximation      198—199
Forward view of eligibility traces with variable $\lambda$      190
Forward view of eligibility traces, equivalence with backward view      176—179 192
full backups      91 108 242—246 255—256
Function approximation      193—225 259
Function approximation, control with      210—215
Function approximation, counterexamples to, with off-policy bootstrapping      216—220
Function approximation, gradient-descent methods for      197—200
Function approximation, linear methods for      200—210
Gambler's problem      101—103
Gauss — Seidel-style algorithm      110
Gazelle calf: example      6—7
Generalization      193—225
Generalized policy iteration (GPI)      105—107 108 210 211 255
Generalized policy iteration (GPI) and Monte Carlo methods      118 122 126 130
Generalized policy iteration (GPI) and TD learning      145 154 157—158
Generalized reinforcement      22
Genetic algorithms      8 11 20 48 225
Gibbs distribution      30—31
Gittins indices      48 49
Global optimum      196
Goal state      239
goals      4 6 56—51
Golf: example      72—73 75—76 80
GPI      see "Generalized policy iteration"
Gradient-descent methods      197—201 210—213 222 223—225
Greedy actions      26
Greedy or e-greedy action selection methods      28—30 48
Greedy policies      77 96 119
Greedy policies, $\epsilon$-greedy policies      122
Grid tasks or Gridworld examples, and DP      92—94
Grid tasks or Gridworld examples, and eligibility traces      190—181
Grid tasks or Gridworld examples, and value functions      71—12 78—79
Grid tasks or Gridworld examples, cliff walking      149
Grid tasks or Gridworld examples, windy      146—148
Hamilton, William      16 84
Hamiton — Jacobi — Bellman equation      85
Hamming distance      210
Hashing      207 224
Heuristic dynamic programming      109
Heuristic search      250—253 256
Heuristic search as expanding Bellman equations      79
Heuristic search as sequence of backups      252—253(fig.)
Heuristic search in TD-Gammon      266
Hierarchy and modularity      259
History of reinforcement learning      16—23
Holland, John      20 22 48 158—159 225
In-place algorithms      91 110
Incomplete knowledge      82
Indirect reinforcement learning      230—231 254
Information state      47 49
Instruction vs. evaluation      25 31—36
Interaction      6
Interaction, agent-environment      52
Interaction, learning from      3
Interval estimation methods      47 49
Jack's car rental: example      98—100 157
Job-shop scheduling: case study      283—290
Kanerva coding      209—210 224
Klopf, Harry      20—22 158 192
Law of effect      17—18 49
Learning automata      20 34—35 48 49
Learning, and planning      9 227—254 259—260
Learning, from examples      see "Supervised learning"
Learning, from interaction      3 9 13
Least-mean-square (LMS) algorithm      20 223
Linear methods, function approximation using      200—210
Linear methods, function approximation using, bound on prediction error      201
Linear methods, function approximation using, convergence of      201 223—224
LMS      see "Least-mean-square algorithm"
Local optimum      196 198—199 201
Lookup tables      see "Tabular methods"
Machine learning      3 4 23
Machine learning, special journal issues on reinforcement learning      23
Markov decision processes (MDPs)      16 17 23 66—67 82 83—84 see "Semi-Markov
Markov property      61—65 82 130 258—259
Maximum-likelihood estimate      144
Maze examples      233—235 236 238 240
MC methods      see also "Monte Carlo methods"
MC methods, constant-$\alpha$      134 136 139—142 144 171
MC methods, every-visit      112 117 131 188
MC methods, first-visit      112—113 117 131 188
MDPs      see "Markov decision processes"
Mean-squared error (MSE)      195—196 201
MENACE (Matchbox Educable Naughts and Crosses Engine)      19 84
Michie, Donald      19—20 83 84 131 223
minimax      10 268—269
Minsky, Marvin      18 21 22 109
Model-learning      230—238 254
Modelfree methods      see "Direct RL"
Models (of the environment)      9 82 227—228
Models (of the environment) and planning      9 227—235
Models (of the environment), incorrect      235—238
Models (of the environment), types of      227—228
Modified policy iteration      110
Modified Q-learning      159
Monte Carlo methods      111—131 see
Monte Carlo methods and control      118—121
Monte Carlo methods and DP methods      111—112 129—131
Monte Carlo methods and TD learning      133—145 169 175
Monte Carlo methods, advantages of      129—131
Monte Carlo methods, backup diagrams for      115 117
Monte Carlo methods, convergence of      112 120—121 124
Monte Carlo methods, eligibility traces and      163 172 188 190—191 192
Monte Carlo methods, incremental implementation of      128—129
Monte Carlo methods, n-step backups and      164—166 170—171 172
Monte Carlo methods, off-policy control by      126—128
Monte Carlo methods, on-policy control by      122—124
Monte Carlo with Exploring Starts (Monte Carlo ES)      120—121
Mountain-car task      214—215
MSE      see "Mean-squared error"
N-armed bandit problem      20 26—27 48
N-armed bandit problem, action-value methods and      27—31
N-armed bandit problem, associative search and      45—46
N-armed bandit problem, evaluation vs. instruction in      31—36
N-armed bandit problem, initial action-value estimates and      39—41
N-armed bandit problem, Monte Carlo methods and      128
N-armed bandit problem, nonstationary environments and      38—39
N-armed bandit problem, pursuit methods for      43—45
N-armed bandit problem, reinforcement comparison methods for      41—43
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå