Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Grotschel M., Lovasz L., Schrijver A. — Geometric Algorithms and Combinatorial Optimization
Grotschel M., Lovasz L., Schrijver A. — Geometric Algorithms and Combinatorial Optimization



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Geometric Algorithms and Combinatorial Optimization

Àâòîðû: Grotschel M., Lovasz L., Schrijver A.

Àííîòàöèÿ:

This book develops geometric techniques for proving the polynomial time solvability of problems in convexity theory, geometry, and - in particular - combinatorial optimization. It offers a unifying approach based on two fundamental geometric algorithms: - the ellipsoid method for finding a point in a convex set and - the basis reduction method for point lattices. The ellipsoid method was used by Khachiyan to show the polynomial time solvability of linear programming. The basis reduction method yields a polynomial time procedure for certain diophantine approximation problems. A combination of these techniques makes it possible to show the polynomial time solvability of many questions concerning poyhedra - for instance, of linear programming problems having possibly exponentially many inequalities. Utilizing results from polyhedral combinatorics, it provides short proofs of the poynomial time solvability of many combinatiorial optimization problems. For a number of these problems, the geometric algorithms discussed in this book are the only techniques known to derive polynomial time solvability. This book is a continuation and extension of previous research of the authors for which they received the Fulkerson Prize, awarded by the Mathematical Programming Society and the American Mathematical Society.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Àëãåáðà/Êîìáèíàòîðèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1988

Êîëè÷åñòâî ñòðàíèö: 362

Äîáàâëåíà â êàòàëîã: 09.03.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Minimization of a submodular function      310 310—311 315 316 325—329
Minimum (r, s)-cut problem      237
Minimum (r, s)-flow problem      239
Minimum basis problem      140
Minimum cut problem      247 248
Minimum degree      230
Minimum dicut problem      251
Minimum dijoin problem      251
Minimum feedback arc set problem      253
Minimum multicommodity cut problem      267
Minimum odd cut problem      257
Minimum potential problem      240
Minimum rooted cut problem      245
Minimum spanning tree problem      247
Minimum strongly connected subdigraph problem      247
Minimum weighted clique covering problem      296 296—298
Minimum weighted coloring problem      296 296—298
Minimum weighted perfect matching problem      204
Minimum weighted T-cut problem      207 258
Minimum weighted T-join problem      260
Minimum-cost circulation problem      241
Minimum-cost flow problem      238 238—242
Minkowski, H.      v 131 140 141 148
Minty, G.J.      42 64 238 241 282 302 340 342
Moore, E.F.      235 342
Moser, J.      339
Mote, J.      236 337
Motzkin, T.S.      35
Multicommodity cut      267
Multicommodity cut packing problem      267
Multicommodity flow problem      266 266—271
Multicommodity path      267
Multiterminal flow problem      249
Munkres, J.      233 342
Murphy, F.      332
Murray, W.      66 337
Murty, U.S.R.      16 332
Name of a convex set      53
Named convex set      53
Nash-Williams, C.St. J.A.      251 335 342
Nearest lattice vector problem      141
Nearly bipartite planar graph      274
Neighbor      17
Nemchinov, V.S.      346
Nemhauser, G.L.      282 301 302 311 339 342
Nemirovskii, A.S.      v 65 94 104 107 113 346
Nesetril, J.      302 331
Network flow problem      190—201 233—242 234
Network synthesis problem      248
Niven, I.      134 342
Node      17 18
Node covering      229 229—233
Node covering number      229
Node of a hypergraph      225
Nondeterministic polynomial time algorithm      24—26 25 56—63
Nonemptiness problem, strong      47 47—48 75 171 173—178
Nonemptiness problem, weak      51 51—53 171
Nonsingular matrix      3
Nonweiler, T.R.F.      134 343
Norm      5 5—8 125—126 148
Normal form, Hermite      43—45 155—156
Objective function      15
Odd antihole inequality      301
Odd circuit      19 272—276
Odd circuit constraints      273
Odd cut      205 207—208 256 256—257 329
Odd cut constraints      205
Odd cycle      235—236
Odd submodular function minimization      325—329
Odd wheel constraints      300 300—301
Odlyzko, A.M.      149 218 220 221 341 343
Okamura, H.      268 343
Olaru, E.      281
Optimal assignment problem      232 232—233
Optimal solution      15
Optimization oracle      55
Optimization over extended polymatroids      309
Optimization over intersections of extended polymatroids      310
Optimization over potymatroids      309
Optimization problem, strong      47 47—50 162—163 171—172 179—180 191—192
Optimization problem, weak      50 50—53 102—122 170—174 173
Optimum dual solution      185 185—188 189—192
Oracle      26—29 27
Oracle algorithm      26
Oracle tape      26
Oracle-polynomial time algorithm      27 54
Orden, A.      238 343
Order of a graph      17
Ore, O.      255 343
Origin      19
Orlin, J.B.      238 343
Orlova, G.I.      250 343
Orthogonal      8
Orthogonalization, Gram — Schmidt      40
Orthonormal representation      285 285—296
Orthonormal representation constraint      285
Outdegree      18
Outer radius      53
Output of a problem      22
Padberg, M.W.      vii 46 65 207 217 223 257 258 259 263 265 301 331 333 338 343
Papadimitriou, C.H.      vii 65 236 239 262 265 267 339 343
Parallel cuts      72
Parallel edges      17
Parallelepiped      8
Parity graph      281
Parthasarathy — Ravindra graph      282
Parthasarathy, K.R.      282 343
Partially ordered set      240—241 280
Partition mattold      211
Path      19
Pentagon      19
Perfect b-matching      257
Perfect b-matching polytope      257
Perfect graph      276 276--298
Perfect graph, $\mathscr{L}$      299
Perfect graph, h-      299
Perfect graph, t-      272—276 273
Perfect matching      17 203 203—208 230—233 255—259
Perfect matching polytope      205
Perfectly orderable graph      281
Permutation graph      280
Perron, O.      134 343
Picard, E.      338
Piecewise linear function      188
Pivot element      36
Pivoting      36—45
Pivoting rule      42
Planar graph      18
Plummer, M.D.      230 342
Pnueli, A.      280 335
Pointed polyhedron      9
polar      11 131 188
Polar cone      11
Polar, $\gamma$-      180
Polyhedrai cone      9
Polyhedral function      188
Polyhedron      9 9—11
Polymatroid      304—324 306 316
Polymatroid intersection theorem      316
Polymatroid, extended      306 306—324 316
Polynomial approximation algorithm (scheme)      35
Polynomial computation algorithm with absolute (relative) error      34
Polynomial space algorithm      24
Polynomial time algorithm      24 27 54
Polynomial time algorithm, nondeterministic      24—26 25 56—63
Polynomial time algorithm, strongly      32 32—33 188—192 189 238
Polynomial time Turing reduction      28
Polynomial transformation      27
Polynomially computable from a given input with absolute (relative) error      34
Polytope      9
Poorten, A. van der      35 343
Positive definite matrix      4
Positive semidefinite matrix      4
Potential      234 234—235 240
Power set      2
Predecessor      18
Prekopa, A.      345
Prim, R.C.      235 247 343
Primal program      15
Principal submatrix      2
Problem      21 21—22
Pulleyblank, W.R.      160 181 250 257 258 259 265 332 333 334 338 343 344
Q+-max-flow min-cut property      226 226—229
Q+-MFMC property      226 226—229
Quasi parity graph      283
Quintas, L.V.      332
R-arborescence      201 242
R-arborescence problem, shortest      201 201—203 242 242—243
r-cut      19
Rado, R.      304 344
Rank of a matrix      3 40
Rank of a matroid      211
Rao, M.R.      vii 46 65 207 223 257 258 259 263 343
Ravindra, G.      282 343
Ray, extremal      184
Realization of an oracle      26
Recession cone      10 178
Recognition problem      279
Recski, A.      211 344
Reduced basis      141—146 142
Reduction, basis      139—156
Reinelt, G.      vii 250 254 331 338
Relative error      34
Removal of a node set      17
Removal of an edge set      17
Riele, H.J.J. te      149 343
Rinaldi, G.      265 343
Ring family      313 313—319 325—329
Rinnooy Kan, A.H.G.      338 343
Rockafellar, R.T.      1 344
Rooij, A. van      280 344
Root of a digraph      19 201 242
Root of a matrix      4
Rooted arborescence      20 201 242
Rooted cut      19 201
Rooted cut packing problem      243
Rose, D.J.      281 344
Row sum norm      7
Roy, B.      331
Running time function      23 24
Rustin, R.      334
Sachs, H.      281 344
Sauer, N.      334 344
Saunders, M.A.      66 337
Sbihi, N.      282 302 344
Scheme, fully polynomial approximation      35
Scheme, polynomial approximation      35
Schmidt, W.M.      146 344
Schnorr, C.P.      146 344
Schoenberg, I.J.      35
Schoenheim, J.      334 344
Schrader, R.      65 344
Schrijver, A.      1 13 65 107 159 193 199 218 252 253 259 274 275 283 285 324 326 337 338 344
Separating cut      207
Separation from extended polymatroids      309
Separation oracle      55
Separation oracle of a lattice      151 151—154
Separation problem, shallow      94—101
Separation problem, strong      48 48—50 170—181
Separation problem, weak      51 51—53 55 57—58 62 102—122 128—132 170—174
Series-parallel graph      273
Serre, J.-P.      335
Seymour, P.D.      200 250 259 261 262 267 268 275 282 337 339 343 344 345
Shallow $\beta$-cut      98
Shallow $\beta$-separation oracle      98
Shallow cut      72 95 96
Shallow separation oracle      95 101
Shallow separation problem      94—101
Shallow-$\beta$-cut ellipsoid method      98
Shallow-cut ellipsoid method      83 94—101 96
Shamir, A.      221
Shannon, C.E.      199 335
Sheehan, J.      335
Shisha, O.      340
Shmoys, D.      338 343
Shortest (di)path problem      234 234—236
Shortest arborescence problem      245
Shortest circuit problem      22
Shortest lattice vector problem      140 143
Shortest multicommodity path problem      267
Shortest odd cycle problem      235
Shortest r-arborescence problem      201 242
Shot, N.Z.      v 56 65 94 345
Sieveking, M.      45 155 337
Simple graph      17
simplex      10
Simplex method      41—43 64—66
Simultaneous diophantine approximation problem      138 138—139 146—156 168—170
Singular matrix      3
SIZE      23 30
Sliding objective function technique      107
Smale, S.      42 345
Small linear form problem      139 147
SMEM      48
SNEMPT      47
Solution of a problem      21 21—22
Sonnevend, G.      66 345
SOPT      47
Space complexity function      24
Spanning arborescence      20
Spanning tree      20
Spanning tree packing problem      251
Specker, E.      337
Spectral norm      7
Spencer, T.      243 247 336
Split graph      281
Splitter      327
SSEP      48
Stability number      229 229—233 272—303
Stable set      18 229 229—233 272—303
Stable set polytope      272 272—303
Standard form of a linear program      41
Standard representation of a polyhedron      9
Star      18 209
State      23
Steiglitz, K.      236 239 343
Step parameter      82
Stoer, J.      1 345
Strang, G.      1
Strassen, V.      40 337 345
Strazicky, B.      345
Strong connector      252 252—253
Strong cut      252
Strong membership problem      48 48—50 170—174
Strong nonemptiness problem      47 47—48 75 172 173—178
Strong optimization problem      47 47—50 162 162—163 171—172 179—180 191—192
Strong perfect graph conjecture      279
Strong separation problem      48 48—50 170—181
Strong unconstrained convex function minimization problem      55
Strong validity problem      47 47—50 170—172
Strong violation problem      47 47—50 170—172 179—180
Strongly connected digraph      19
Strongly connected subdigraph      247 252—253
Strongly perfect graph      282
Strongly polynomial time algorithm      32 32—33 188—192 189 238
Strongly t-perfect graph      274 274—275
Submodular circulation      320
Submodular function      304 304—308
Submodular function minimization      310 310—311 315 316 325—329
Submodular on crossing pairs      315
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå