Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Samet H. — The design and analysis of spatial data structures
Samet H. — The design and analysis of spatial data structures



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The design and analysis of spatial data structures

Автор: Samet H.

Аннотация:

Spatial data consist of points, lines, rectangles, regions, surfaces, and volumes. The representation of such data is becoming increasingly important in applications in computer graphics, computer vision, database management systems, computer-aided design, solid modeling, robotics, geographic information systems (GIS), image processing, computational geometry, pattern recognition, and other areas. Once an application has been specified, it is common for the spatial data types to be more precise. For example, consider a geographic information system (GIS). In such a case, line data are differentiated on the basis of whether the lines are isolated (e.g., earthquake faults), elements of tree-like structures (e.g., rivers and their tributaries), or elements of networks (e.g., rail and highway systems). Similarly region data are often in the form of polygons that are isolated (e.g., lakes), adjacent (e.g., nations), or nested (e.g., contours). Clearly the variations are large.


Язык: en

Рубрика: Computer science/Алгоритмы/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1990

Количество страниц: 493

Добавлена в каталог: 22.11.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
TREE      44
Trellis      757
Triacon      22
Triacon hierarchy      367 369
Triangular grid for tiling the plane      21 (also see “Triangular tiling”)
Triangular grid for topographic data      366
Triangular Irregular Network (TIN)      366
Triangular quadtree      20—21 324
Triangular tessallation      see “Triangular tiling”
Triangular tiling      18
Triangulation      287 319
Trie      5 44 55
Triendl, E.      433
Tropf, H.      105—108 459
TRY_TO_MERGE      248
TRY_TO_MERGE_PM23      260
Tucker, L.W.      11 459
Two-dimensional region data      1—41
Two-manifold surface      327 331 333 337—338
Typ      341
Udupa, J.K.      422
Uhr, L.      12 459
Ullman, J.D.      vii 72 105 107 156 243 277 416 459
Uniform distribution      111 123 174
Uniform orientation      20
Uniform quadtree      100
Uniformly adjacent tiling      20
Union-find      337
Unique solid modeling representation      403
Unit-segment tree      160 165 179
Unlimited tiling      18
Unnikrishnan, A.      459
UP      304
v-rectangle      181
Vaidya, P.M.      388 459
Vaishnavi, V.      72 175 381 391 459
Validity      332
Value      411
Value of a halfspace      340
van Dam, A.      321 428
van Emde Boas, P.      380 436
van Leeuwen, J.      x 53 62 70 72 179—180 380—381 392 427 447 458 459
van Lierop, M.L.P.      459
Van Rosedale, J.      427
van Wijk, J.J.      435
Vanderschel, D.      328 421 459
Varady, T.      435 460
Variable resolution      ix 3
Vazquez, A.M.      367 417
Vectors      312
Veenstra, J.      321 323—324 326 337 403 416 460
VEND      333
Venkatesh, Y.V.      459
Vertex node      327
Vertex view      321—322
Vertex-based PM quadtree      239
Vertical rectangle      181
Very large-scale integration      see “VLSI”
Visible vertex      288
VLSI (very large-scale integration)      ix 153
Voelcker, H.      11 186 338—339 369 436 450 460
void      316
Void node      5
Volume computation      180 (also see “Measure problem”)
Volume data      315—376
Von Herzen, B.      xii 368—369 376 460
Voxel      5
VOXEL_LEVEL      342
VSTART      333
Wagle, S.      ix 227 312 444
Walker, M.      460
Walker, W.      447
Wallis, A.F.      339 460
Walsh, J.P.      424
Walsh, T.R.      37 380 417 421 427 430 460
Walter, I.      13 448
Wang, X.      424
Ward, G.J.      460
Warnock, J.E.      10 235 460
Warping process      115
Watson, D.F.      293 319 461
Weakly edge visible      309
Webber, R.E.      ix xi 33 100 237 239 252 254—255 278 280 308 311 398 402 450 452—454 461
Weber, J.      xii
Weber, W.      461
Weghorst, H.      461
Weide, B.      166 174 392 429 461
Weiler, K.      331—333 337 426 461
Well behaved      329 353
Weng, J.      355 461
Werner, K.H.      461
Whang, K.Y.      438
Whined, T.      438 451 461
White, M.      14 106 108 384 461
WHITE_CSG_NODE      346
Widmayer, P.      xii 434 456
Willard, D.E.      48 65 72 381 461
Williams, E.H.Jr.      47 62 65 380 419
Willis, P.      420 443 462
Window query      190 217
Winged-edge representation      333—334 337
Wireframe model      316
Wirth, N.      x 411 435
Wise, D.S.      xii 91 383 415 462
Wiseman, N.E.      446
Witten, I.H.      14 384 462
Wollman, K.      xii
Wong, C.K.      48 62 65 79 381 439
Wong, E.K.      462
Woo, T.C.      332 462
Wood, D.      107 163 175 179—180 391—392 419 447 456 459
Woodwark, J.R.      328 338—339 346 420 443 449 460 462
Wu, A.Y.      419 425 438 462
Wu, O.L.      430
Wulf, W.A.      412 462
Wyvill, B.      14 384 462
Wyvill, G.      330 339 360 364—365 409 422 462
x-discriminator      66
x-interval      300
XCOORD      49 66 93 242 304
X_VAL      304
y-discriminator      66
y-monotone subdivision      294
Yabia, H.      442 449 463
Yaniaguchi, K.      20 322 324 337 429 438 463
Yap, C.K.      180 184—185 447
Yau, M.      11 320 330 403 463
YCOORD      49 66 93 242 304
Yen, D.W.L.      425
Yerry, M.A.      11 463
Yie, S.      461
Yokota, M.      8 11 436
Yu, C.T.      449
Yuba, T.      433
Z order      14 106 109 131
Zemankova, M.      426
Ziavras, S.G.      463
zkd Btree      706 113
zkd tree      706
Zou, H.      421
Zuniga, O.      441
1 2 3 4 5 6 7
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте