Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Chvatal V. — Linear programming
Chvatal V. — Linear programming



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Linear programming

Автор: Chvatal V.

Аннотация:

Linear Programming was written primarily for upper-division and graduate courses in operations research/management science, mathematics, and computer science. It may serve not only as an introduction to the subject but also as a reference and guide to applications. When I taught in the Operations Research Department at Stanford University, I found that none of the available texts quite fit my presentation, so I wrote lecture notes and distributed them in class. The students' enthusiasm encouraged me to rework the notes into a manuscript.


Язык: en

Рубрика: Computer science/

Серия: Сделано в холле

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1983

Количество страниц: 478

Добавлена в каталог: 10.06.2011

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Muir, F.      221
Multicommodity flow problems      435
Multiple optimal solutions      22—23
Multiple pricing      115
Multiplication of matrices      79—82
Multipliers      55—56 144
Multistage problems      see "Scheduling production and inventory"; "Personnel training example"; "Caterer problem"
Mulvey, J. M.      312
Munkres, J.      400
Murtagh, B. A.      115
Murty, K. G.      165
n-dimensional space      252
Negative cycle      362 402
Neighbor      278
Nemhauser, G. L.      207
Nemirovskii, A. S.      9 451
Network      292 369
Network flow problem      see "Upper-bounded transshipment problems"
Network simplex method      297—310
Network simplex method, algebraic description      300—303
Network simplex method, computer implementations      311—317
Network simplex method, economic motivation      297—299
Network simplex method, initialization      303—306
Network simplex method, number of iterations      311
Network, acyclic      296
Network, auxiliary      296
Network, connected      296
Network, incidence matrix of      294
Network, layered      see "Core"
Network, working      399
Nishizeki, T.      xiii
Node      292
Node numbers      306—307
Node wet      393
Node, balanced      393
Node, dry      393
Node, dummy      322
Node, intermediate      292 369
Node, transshipment      see "Intermediate"
Node,depth of      313
Node-arc matrix      see "Incidence matrix of a network"
Nonbasic activity      104
Nonbasic variable      20
Nondegeneracy      see "Degeneracy"
Nonnegativity constraints      6
Nonsingular matrix      93
Nonzero tolerances      see "Zero tolerances"
Norm      218 269
Normal basic feasible solution      134 244
Normal distribution      220
Null vector      see "Zero vector"
Number of iterations in the Dantzig — Wolfe decomposition algorithm      441
Number of iterations in the network simplex method      311 335
Number of iterations in the primal-dual method      398 400
Number of iterations in the simplex method      45—51
Number of vertices of a polyhedron      272—273
Nutrirtion problem      see "Diet problem"
Nutritive values of foods      185—187
o-notation      380
Objective function      6
Objective function, parametric      162
Oil refinery example      10—11 69 70
On-the-job training example      11—12 168
Open pit problem      373
Operation count in Gaussian elimination      73 77
Operation count in the simplex method      112—114
Operations on matrices      79—82 84
Optimal certificate      61—62
Optimal solution      7
Optimal solution, uniqueness of      22—23
Optimal strategy      231
Optimal value      7
Optimum cover problem      388
Orchard — Hays, W.      97 105
Orden, A.      34 291
Order, partial      340 373
Oresme, N.      251
Origin      28
Origin in a transportation problem      see "Source"
Outgoing variables      see "Leaving variable"
Outliers      220
Overdetermined systems of linear equations      213—227
Overtime production      189 323
Packed form of sparse matrices      82 110
Paige, C. C.      xiii
Paper recycling example      347—350
Paper trim problem      see "Cutting-stock problem"
Parametric linear programming      162—166
Partial order      340 373
Partial pivoting      74
Partial pricing      115
Partitioned preassigned pivot procedure ($P^{4}$)      see "Hellerman — Rarick procedure"
Path      296
Path, alterable      375
Path, augmenting      375
Path, directed      391
Path, shortest      391
Payoff matrix      230
Peripheral memory      113—115 406 408 410 413
Permutation matrix      83 86—87 90—91 406—407
Perold, A. F.      xiii 194 440 441
Personnel training example      11—12 168
Perturbation method      34—37 258—260 319
Phase one, phase two      see "Two-phase simplex method"
Phelps, K. T.      xiii
Picard, J. C.      373
Pivot column      24
Pivot element      73
Pivot row      21 24
Pivot stem      315
Pivoting in Gaussian elimination      74 78 89—92
Pivoting in the network simplex method      301
Pivoting in the simplex method      21
Pivoting rule      51 311—312
Pivoting strategy in Gaussian elimination      78 89—92
Planning, decentralized      436
Player      230
Pointers      408
Poker      235—237 238—239
Polyhedron      252 331
Polyhedron with no vertices      275—277
Polyhedron, facets of      252
Polyhedron, separation theorem for      267
Polyhedron, vertices of      253 271—273 287—288 331
Polytope      287
Postoptimality analysis      see "Sensivity analysis"
Prager, W.      324
Pratt, A. W.      221
Predecessor      312—313
Prekopa, A.      273
Preorder      314
Price, shadow      67 104 437
Pricing      114—115
Pricing out a nonbasic activity      104
Primal problem      56 139
Primal-dual method      392—400
Product form of the inverse (PFI)      xi 105 117
Product matrix      81
Product, scalar      269
Production and inventory scheduling      188—193 322—323
Proll, L. G.      282
Pure strategy      229
Quandt, R. E.      46
Queyranne, M.      xii
Rank      see "Full row rank"
Rarick, D. C.      91
Raws      195
Reciprocal      94
Recommended daily dietary allowances      182—183
Recycled paper example      347—350
Redundant inequalities      242 247
Refactorization      111—113
Region of feasibility      252
Regular matrix      see "Nonsingular matrix"
Regular-time production      189 323
Reid's method      412—413
Reid, J. K.      xiii 115 406
Reinversion      see "Refactorization"
Relationship between basic feasible solutions and vertices of polyhedra      253 274
Relationship between game theory and linear programming      232 239
Relationship between primal and dual problems      60—61 140
Relationship between spanning trees and bases in a transshipment problem      296—297 319
Renz, P.      xiii
Representation of a tree      312—314
Resource      104 173
Restricted primal problem      115
Restricted variable      119—120 138
restrictions      see "Constrains"
Return arc      368
Reverse arc      300 361
Revised simplex method      xi 97 100—102
Rhys, J.,      373
Right-hand side, parametric      165
Riley, V.      9
Robustness of an approximation      220
Rockafellar, R. T.      269
Roedl, V.      xiii
Root of a tree      201 308—309 312
Rose, D. J.      91
Rosenberg, I.G.      xiii
Rounding errors      74
Row player      230
Row rank      see "Full row rank"
Row singletons      413
Row vector      82
Rubin, D. S.      282
Ryser, H. J.      366
Saaty, T.      163
Samuelson, P. A.      68
Sargent, T.      221
Saturated arc      354
Saunders's method      413—414
Saunders, M. A.      xiii 406 412
Savage, J. L.      234
Scalar product      269
Scaling in transshipment problems      400—401
Scaling systems of linear equations      76—77
Scheduling production and inventory      188—193 322 323
Schmidt, B. K.      282
Schrijver, A.      451
Score vector      366
Scrimshaw, N. S.      183
Search breadth-first      280
Search depth-first      314
Seneta, E.      227
Sensitivity analysis      148—149 158—162 176 181—182
Separation theorem for convex sets      269
Separation theorem for polyhedra      267
Set bounded      270 287
Set convex      263
Shadow price      67 104 437
Shannon, C. E.      371
Sharpe, W. F.      221
Shor, N. Z.      451
Shortest paths algorithm      391—392 402
simplex      452
Simplex tableau      xi 23
Simplified poker      235—237 238—239
Simultaneous equations      see "System of linear equations"
Singleton      413
Singular matrix      93
Sink      292 369
Size of a problem      51
Slab      270
Slack variables      14
Sleator, D. D. K.      380
Smale, S.      46
Smallest-subscript rule      37—38 125
Smith, D. E.      74
Smoothing production      188—193 322—323
Solow, R. M.      68
Solution, approximate      213 216—227
Solution, basic      120
Solution, basic feasible      19 100 120
Solution, degenerate      30 124
Solution, dual-feasible      157
Solution, feasible      6
Solution, feasible tree      296 354
Solution, normal basic feasible      134 244
Solution, optimal      7
Solvability of systems of linear inequalities      143—144 146
Source      292—369
Space      see "n-dimensional space"
Spanning tree      296
Spanning tree and the basis matrix      296—297 319
Sparse matrix      82
Sparse system of linear equations      77
Sparsity      xi 111—114 406 409 451—452
Special structure      92 see
Spectrophotometry      214—216
Sphere      446 see
Spike      91 413
Staircase structure      193—194
Standard form of linear programming problems      6
Standard simplex method      97
Standard simplex method vs. revised simplex method      113—114
Steepest edge      115
Steiger, W. L.      xiii 227
Steinberg, D. I.      33
Stiemke, E.      248
Stochastic vector      230
Stone, R. E.      451
Storage of sparse matrices      82—83
Strategy, dominant      237
Strategy, mixed      231
Strategy, optimal      231
Strategy, pure      229
Strict linear inequalities      43 448—451
Strongly feasible tree      308—309 319 362
Structural variable      see "Decision variable"
Structure, block-angular      434—435
Structure, block-diagonal      435
Structure, block-triangular      412
Structure, GUB      415
Structure, staircase      193—194
Struik, D. J.      74
Strum, J. E.      18
Subproblem in Dantzig — Wolfe decomposition      428
Substitution of an activity      105
Sum of matrices      84
Suurballe, J. W.      33
Swanson, E. R.      171 177
Swanson, H. S.      xiii 179
Swine      180
Symmetric game      233
System of distinct representatives (SDR)      336
System of linear equations      143—146 240—249 444—454
System of linear equations, dense      77
System of linear equations, equilibrated      76
System of linear equations, matrix representation of      82
System of linear equations, overdetermined      213—227
System of linear equations, solution of      see "Gaussian elimination"
System of linear equations, sparse      77
System of linear equations, well-scaled      76
System of linear inequalities      143—146 240—249 444—454
System of linear inequalities, characterizing solutions of      244
System of linear inequalities, inconsistent      144
System of linear inequalities, unsolvable      144
Tableau format      23—25
Tableau simplex      xi 23
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте