Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Chvatal V. — Linear programming
Chvatal V. — Linear programming



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Linear programming

Автор: Chvatal V.

Аннотация:

Linear Programming was written primarily for upper-division and graduate courses in operations research/management science, mathematics, and computer science. It may serve not only as an introduction to the subject but also as a reference and guide to applications. When I taught in the Operations Research Department at Stanford University, I found that none of the available texts quite fit my presentation, so I wrote lecture notes and distributed them in class. The students' enthusiasm encouraged me to rework the notes into a manuscript.


Язык: en

Рубрика: Computer science/

Серия: Сделано в холле

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1983

Количество страниц: 478

Добавлена в каталог: 10.06.2011

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Farm planning example      177—182
Feasible dictionary      19
Feasible flow      370
Feasible origin      28
Feasible region      see "Region of feasibility"
Feasible solution      6
Feasible tree solution      296 354
Feinstein, A.      371
Fermat, P.      251
Fiala, F.      xiii
File, backward      408
File, eta      110—112
File, forward      408
Fill-in      78 409—410
Finals      195
Finite basis theorem      244
Finite Basis Theorem, converse of      245
First-fit decreasing (FFD)      208
First-labeled, first-scanned      380
Floating-point arithmetic      74
Flow      369
Flow problems      see "Upper-bounded transshipment problems"
Flow, blocking      383
Flow, feassible      370
Flow, volume of      370
Ford, L. R. Jr.      367 371 374 378 390 391
Forestry, case study in      171—176
Forrest — Tomlin method      410—412
Forrest, J. J. H.      406 410—411
Forsythe, G.      77
Forward arc      300 361
Forward error analysis      75
Forward file      408
Forward transformation (FTRAN)      111 114 406
Fourier — Motzkin method      241—242
Fourier, J. B. J.      8 227 241—242 254
Fox, K.      171 177
Free variable      119 132—133 138
Free variable, treatment of      132—133
Fulkerson, D. R.      339 341 367 371 374 390 391 435
Full row rank      133 227
Function, linear      6
Function, objective      6
Fundamental Theorem of Linear Programming      42 133—134
Gacs, P.      xiii 451
Gaddum, J. W.      324
Gale, D.      57 68 228 273 364 366
Galil, Z.      380
Galileo, G.      251
Game of Cheap, Middling or Dear      239
Game of Morra      228—230 232 237 238
Game of poker      235—237 238—239
Game theory      228—239
Game theory, equivalence with linear programming      232 239
Game, fair      233
Game, matrix      230
Game, symmetric      233
Game, value of      233
Gantmacher, F. R.      444
Garey, M. R.      51 336
Garfinkel, R. S.      207
Gasoline blending example      10—11 69 70
Gass, S. I.      9 163
Gassner, B. J.      303
Gauss — Jordan elimination      xii 79
Gauss, C. F.      74 227
Gaussian distribution      220
Gaussian elimination      xii 71—79 272 277 443—444
Gaussian elimination, accuracy of      74—77
Gaussian elimination, matrix description of      84—88
Gaussian elimination, speed of      77—78
Gay, D. M.      414
General form of linear programming problems      119 137—138
Generalized upper bounding (GUB)      415—424
Geometric interpretation of the simplex method      253—255
Gilmore, P. C.      198 206 209—211
Givens, W.      75
Glassey, C. R.      347
Glover, F.      391
Goldfarb, D.      115 457
Goldstine, H. H.      75
Golub, G. H.      406
Gomory, R. E.      198 206 209—211
Goodness of fit      213 216—221
Gordan, P.      248
Graph      331
Graph, bipartite      332 372 388
Graphic method      x 260—261
Grattan-Guiness, I.      227
Greene, J. H.      10
Groetschel, M.      451
Gruenbaum, B.      267
Gupta, V. K.      347
Hahn, G.      xiii
Half-ellipsoid      446
Half-simplex      452
Half-space      252
Hall's theorem      337
Hall, P.      337
Halmos, P.      ix
Hammersley, J. M.      330
Hanssmann, F.      193
Harris, P. M. J.      115
Hashing tables      282
Hawkins, T.      81
Head of an arc      292
Heap      402
Hellerman — Rarick procedure      91—92
Hellerman, E.      91
Helly, E.      266
Hess, S. W.      193
Heuristic, FIRST-FIT DECREASING      208
Higham, P.      xiii
Hirshfeld, D. M.      416
History of linear programming      7—9
Hitchcock transportation problem      345
Hitchcock, F. L.      345
Ho, J. K.      194 441
Hochbaum, D.      xiii
Hoffman, A. J.      xiii 33 193 330
Hopcroft, J. E.      282
Hotelling, H.      75
Hull      see "Convex hull"
Hungarian method: Primal-dual method (so named by H. W. Kuhn in recognition of work, by J. Egervary and D. Koenig)      see "Assigment problem"
I-Ching      74
Identity matrix      81
implementations      see "Computer implementations"
Incidence matrix of a network      294
Incidence matrix of a network, truncated      295
Incoming variable      see "Entering variable"
Incomplete information at the center      436
Inconsistent system of linear inequalities      144
Inequality constraints in transshipment problems      320—322
Inequality, linear      6
Inequality, redundant      242 247
Infeasibility form      129
Infeasible, linear programming problem      7 143
Infeasible, upper-bounded transshipment problem      364
Initialization of the Dantzig — Wolfe decomposition algorithm      432—434
Initialization of the network simplex method      303—306
Initialization of the primal-dual method      393 398—399
Initialization of the simplex method      42 125—129
Inner product      see "Scalar product"
Integer linear programming problems (ILP problems)      328
Integral flow theorem      371
Integrality theorem      327 365
Intermediate node      292 369
Inventory scheduling      188—193 322—323
Inverse of a matrix      xii 94
Inverse of the basis      xi 117
Inverse of the basis in the product form      xi 105 117
Ishii, M.      xiii
Iterations, number of in the Dantzig — Wolfe decomposition algorithm      441
Iterations, number of in the network simplex method      311 335
Iterations, number of in the primal-dual method      398 400
Iterations, number of in the simplex method      45—51
Jacobs, W.      193 324
Jeroslow, R. G.      50
Jewell, W. S.      435
Johnson, D. B.      392
Johnson, D. S.      51 208 336
Join      309
Jordan, W.      79
Judin, D. B.      9 451
k-heap      402
Kantorovich, L. V.      8
Karp, R. M.      380 391 400
Kepler, J.      251
Khachian, L. G.      9 52 444 451
Kirchberger, P.      267 269
Kirchhof's law      see "Conversation law"
Klee — Minty problems      47—49 53 255—258
Klee, V.      xiii 47 267
Klincewicz, J. G.      303
Knapsack problem      200—207
Knuth, D. E.      282
Koenig — Egervary theorem      334
Koenig's Theorem      328
Koenig, D.      328 330 334
Kohler, D. A.      241 254
Koopmans, T. C.      8
Kotiah, T. C. T.      33
Kotzig, A.      371
Kubat, P.      xiii
Kuhn's simplified poker      235—237 238—239
Kuhn, H. W.      xiii 43 46 57 144 228 235 238 242 374 390 400
Labeling method      see "Augmenting path method"
Landau, H. G.      366
Laplace, P. S.      227
Large-scale problems      113 416
Largest-coefficient rule      46 50
Largest-increase rule      50
Lau, H. T.      xiii
Lawler, E. L.      336
Layered network      see "Core "in Dinic's algorithm)
Least squares approximation ($L_{2}$ approximation)      see "$L_{p}$-approximation"
Leaving arc      300
Leaving column      102
Leaving variable      21 29 123 124
Legendre, A. M.      74 227
Leibniz, G. W.      251
Lemke, C. E.      152
Length of a path      391
Length of a vector      82
Levin, A. Ju.      451 452
Levin, L. A.      xiii 452
Lexicographic method      34—37
Linder, R. E.      214
Line      276
linear combination      55 138
Linear constraints      6
Linear equation      6
Linear equation, systems of      71—79 82 93—94 272 443—444
Linear function      6
Linear graph      see "Graph"
Linear inequality      6
Linear inequality, strict      43 448—451
Linear inequality, systems of      143—146 240—249 444—454
Linking constraints      435
Logical variable      see "Artifical variable; Slack variable"
Loute, E.      441
Lovasz, L.      451
Lower triangular matrix      83
Lower-bounds on individual variables      119
LU-Decomposition      88
M Method      see "Big M method"
MacLagan, R. C.      239
Magee, J. R.      193
Maheshwari, S. N.      384
Malhotra — Kumar — Maheshwari procedure      384—386 388 389
Malhotra, V. M.      384
Mandelbrot, B.      221
Manne, A. S.      194
Marginal value      66 see
Markowitz's pivoting strategy      89
Markowitz, H. M.      78
Marriage theorem      see "Koenig's Theorem"
Marshall, K. T.      33
Martin, M. S.      xiii
Master problem      426 440—441
Masuda, S.      12
Matching      331 372
Matrix      81—84 92—94
Matrix description of dictionaries      98—100
Matrix game      230 see
Matrix representation of systems of linear equations      82
Matrix, algebra of matrices      84
Matrix, basis matrix      100
Matrix, block-angular      434—435
Matrix, block-diagonal      435
Matrix, block-triangular      412
Matrix, doubly stochastic      329
Matrix, entry of      81
Matrix, eta      83
Matrix, identity      81
Matrix, incidence      294
Matrix, inverse of      94
Matrix, lower triangular      83
Matrix, node-arc      see "Matrix incidence"
Matrix, nonsingular      93
Matrix, operations on      79—82 84
Matrix, packed      82—83
Matrix, payoff      230
Matrix, permutation      83 86—87 90—91 406—407
Matrix, product      81
Matrix, regular      see "Matrix nonsingular"
Matrix, singular      93
Matrix, sparse      82
Matrix, storing      82—83
Matrix, sum      84
Matrix, transpose of      84
Matrix, triangular      83
Matrix, truncated incidence      295
Matrix, upper-triangular      83
Matrix, zero-one      366
Mattheis, T. H.      282
Mauldon, J. C.      330
Max-flow min-cut theorem      370
Maximum-flow problem      370
Maximum-flow problem, applications of      372—373
McMullen, P.      272—273
Mean      219
Meat-packing example      10 69 70 352
Median      219
Median method      210
Memory of a computer      113—115 406 408
Merrill, A. L.      184
Midrange      219
Mill, J. S.      251
Minimax theorem      233 234 239
Minimum cost network flow problem      see "Upper-bounded transshipment problems"
Minimum cut      see "Max-flow Min-cut Theorem"
Minkowski — Farkas lemma      see "Farkas's lemma"
Minkowski, H.      245 262
Minty, G. J.      47
Mixed strategy      231
Models of economy      68
Molecular absorptivity      214
Moler, C.      77
Morra      288—230 232 233 237 238
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте