Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Dauns J. — A Concrete Approach to Division Rings
Dauns J. — A Concrete Approach to Division Rings



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: A Concrete Approach to Division Rings

Àâòîð: Dauns J.

Àííîòàöèÿ:

Some disciplines try to study and classify their basic building blocks motivated by a vague belief that the more complex structures could then be understood simply from knowing how the fundamental building blocks are combined to form the whole structur In physics they are the elementary particles, in biology, the innei most workings of a single cell; in group theory, the simple groups. In ring theory, division rings would have to be counted as one of the basic building blocks. From this point of view the constructic of a new division ring is an event which rivals in significance the discovery of a new elementary particle...


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñåðèÿ: Ñäåëàíî â õîëëå

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1982

Êîëè÷åñòâî ñòðàíèö: 430

Äîáàâëåíà â êàòàëîã: 15.05.2011

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
A.C.C. = ascending chain condition      296
Albert, A.A.      xii xvi 30 32 35 42 46 118 120—124 128 129—131 294 316 323—324 327 333 339
Algebraic closed field      117 182
Algebraic closed ring      366 370
Algebraic extension      60 99 117 213
Algebraic number field      32 117
Alternative ring      334—335
Amitsur — Levitsky theorem      160
Amitsur, S.A.      xiii 32 133 135 153 164—165
Amitsur, S.A. and Saltman, D.      124
Anti-automorphism      4
Anti-homomorphism      4
Anti-isomorphism      4
Artin, E.      xiv 44 47 56 60 170 327
Artin, E. and Nesbitt, C.J. and Thrall, R.      25 33 82 84 87 97 98 116—117
Associates      347
atom      345 364
Automorphism      27 222
Automorphism, extension      36 179
Automorphism, inner      37 84 96—98 175—176 180 229 231 232
Behrend, F.      333
Benard, M.      153
Benard, M. and Schacher, M.      153
Bezout, right      350
Bezout, weak domain      351—354 356
Bilinear inner product      337
Binomial extension      245 264 285—286 288
Birkhoff, G. and von Neumann, J.      333
Blaschke, W.      xii
Bokut, L.A.      xv
Bott, R. and Milnor, J.      333
Bowtell, A.J.      xv
Brauer group      114—115 152
Brauer, R.      xii 32 114—115 123—124 152
Bruck, R.H.      342
Caley — Dickson algebra      338
Caley — Dickson process      338—339
Cancellative semigroup      297
Cayley algebra      333 337—339
Cayley, A.      xi
Cecioni, F.      123
Center nonassociative ring      334
Center ring      102 159 232 235
Central polynomial      155
Central simple algebra      33 93 95 97
centralizer      322 362—363
Centrally finite division algebra      30
Change of coordinates      219—222
Cohn, P.M.      xiii xv—xvi 184 221 238 240—241 263 271 312 319 347 351 356 362—363
Commutation polynomials      268
Commutator element      218
Commutator ring, A-commutator      46 97—98
Commutator ring, D-commutator      76
Commutator ring, R-commutator      93
Conjugate element      19
Conjugate roots      361 363
Conrad, P.      295 305 316
Conrad, P. and Dauns, J.      294
Conway, A.W.      xii
Coprime      346
Coxeter, H.S.M.      xii
Cozzens, J.H.      370
Cozzens, J.H. and Faith, C.      224
Crossed product      58 61 64—65 67 83 85 103 138—153 see "Wedderburn
Crossed product, cyclic      71
Crossed product, cyclic division ring      86 119—122
Crossed product, noncyclic      124 182
Cyclic algebra      46 71—73 86—87 176
Cyclic division ring      58 119
Cyclic field      45 121
D.C.C. = descending chain condition      94 98
Dauns, J.      295 305 309 312 352
Deavours, C.A.      xii
Degree of algebra      116—117 124
Derivation      189 218 333 see "Lie
Derivation, (S,T)-derivation      270—274
Derivation, inner      194 270—271 284 287 288
Derivation, inner right      194 271
Derivation, left      189
Derivation, nilpotent      275—293
Derivation, outer      194
Derivation, right      189 265 267 275 284
Derivation, surjective      218
Deuring, M.      xvi 4
Dickson, L.E.      xi—xiii xvi 32 51 123 131
Differential basis      277 286 289 292—293
Differential polynomial      223
Differentially closed      370
Dimension finite      366
Dirac, P.A.M.      xii
Disjoint      296
Division algebra or ring      xix see
Division algebra or ring, centrally finite      30
Division algebra or ring, criterion for      22 42 87 118—122
Division algebra or ring, nonassociative      333
Division algebra or ring, noncrossed product finite      164 168 172
Division algorithm      194—196
Division ring component      96 99
Divisor      see also "HCLF"
Divisor, greatest common      199
Divisor, greatest common left      198
Dot product      7
Duval, P.      xii
Edmonds, J.D.      xii
Endomorphism      35—36 200 208 363 368
Euler, L.      342
EXPONENT      116 119—121 122—123
Extension, derivations      208—211 212
Extension, endomorphisms      36 39—40 208—211
Extension, iterated      23—24
Extension, ring      19
Extension, theorem      96—97
Factor set      31 60—61 65 71 136 138
Factor set, equivalent      66—67 70 74
Factor set, normalized      68
Faith, C.      242
Faithful      77—78
Fein, B. and Schacher, M.      58 153 165
Field      xix see "Purely
Field extension      see also "Field" "Maximal
Field extension, algebraic      60 99 213
Field extension, finite, normal, separable      46 60 72 83 86 103 121 134 161 219
Field extension, maximal separable      100 102
Field extension, nonseparable      89
Field extension, purely inseparable      100
Field extension, separable      89 99 102—104 161
Field extension, transcendental      49 55 89 124 164
Field, constants      277
Field, cyclic      45
Field, Differentially Closed      370
Field, formally real      117 124—125 143—144
Field, perfect      369
Field, real closed      117
Field, subfield: separable, normal, maximal      172
Fields, K.      153
Fields, K. and Herstein, I.      153
Flexible      335 339
Ford, C.      133—134 136 149 153
Ford, C. and Janusz, G.J.      149
Formal power series ring      see "Power series one "Semigroup
Formally real      117 124 143—144
Formanek, E.      155
Free algebra      154 344 351
Free ring      319
Frobenius theorem      2 324—326
Frobenius, G.      2 325 326
Fuchs, L.      309 316
Galois group      44 46 64 136 161 322 324 332
Galois group, cyclic      332
Generalized quaternion algebra      20 127
Generator      243
Generic ring      157
Glassmire, W.      32
Goldie, A.W.      186
Graves, J.T.      xi
Greatest comnon divisor = gcd      345—346
Group, finite      44
Group, finite multiplicative      135
Group, generalized quaternion      136
Group, rotation      10
Group, semidirect product      134
Group, special orthogonal      10
Hall, M.      136
Hamilton, W.R.      xi 1 16
Harris, B.      218
Hasse, H.      xii 32 124
HCLF = highest common left factor      346
Herstein, I.N.      84 87 97 116 122 132—133 136 214 325 368
Hilbert, D.      xiii
Homomorphism      200 208 see
Hopf, H.      333
Idealizer      362
Idempotent      98 110
Inner automorphism      19 84 97—98 176 178 229 231 232
Inner product      7 337
Inseparable element      99
Integral domain      345
Involution      5 8 20—21 336 338
Irreducible element      198 345
Isbell, J.R.      118 294
Jacobson, N.      xvi 18 58 120—121 153—154 155—156 159 162 165 166 171 182 214 269 333
Janusz, G.J.      153
Jategaonkar, A.V.      238 312
Johnson, R.E.      309
Jordan algebra, commutative      335
Jordan algebra, noncommutative      335
Jordan algebra, special      335
Klein, A.A.      xv
Kleinfeld, E.      339
Koh, K.      xv
Kothe, G.      18 24 89
Kuzmin, E.N.      342
Kyrala, A.      xii
L-homomorphism      298—299
L-ring      298
Lanczos, C.      xii
Lang, S.      47 60 104 150 161 369
Lattice ordered, division ring      318
Lattice ordered, ring      298 304—305
Laurent series division ring      161 174
Laurent series field      172—174 179
LCRM = least common right multiple      346
Least common multiple = lcm      50 345 348 353 354
Left regular representation      5
Leibniz rule      187—188 191 205 209 213—214 245—251 264 266
Length      61
Length reduction argument      63
Lex, W.      xi 333 339—340 342
Lie algebra      333 335
Linearly disjoint      173 179 181
Linearly ordered      296
Malcev, A.I.      xiv 309
Maximal subfield      75 77—78 79—82 88—91 95 96 162 171 173 175 179 180—182
Maximal subfield, nonseparable      89—91
Maximal subfield, normal, separable      168—169 181
Maximal subfield, separable      89—91 95
McCarthy, P.J.      44 56
McHaffey, R.      294
Minimal polynomial      45 49 52 56—57 97 133—134 170 213 338
Monic      199
Naturally ordered      352
Neumann, B.      xiv 294 309 319
Nilpotent derivation      275—293
Noether, E.      xii 32 124
Noetherian      183 186—188 215
Nonassociative division ring      333
Noncrossed product      164—165 168—169 171—172
Noncyclic crossed product      123—130
Nonseparable field extension      89
Norm      8 44—45
Norm, $N_{K/F}$      44—45 53—55 58
Norm, nondegenerate      336
Norm, nonsingular      336 337
Normal subfield      see "Field extension"
Nucleus      334
o-homomorphism      298—299 304
o-isomorphism      298—299 304
Octonions      338—339
Opposite group      3—4 15
Opposite ring      3—4 93
Ordered, disjoint      296
Ordered, linearly      296
Ordered, naturally      352
Ordered, positive cone      298
Ore, 0.      xiii
Ore, left      197
Ore, right condition      185 316
Ore, right domain      191 215
Ore, right quotient ring      186 191 263 267
Osborn, J.M.      342
Partially ordered ring      298
Partially ordered semigroup      297
Perfect field      369
Po-ring      298
Po-semigroup      297
Po-set = Partially ordered set      296
Polynomial identity      155 159
Polynomial ring, left skew      197
Polynomial ring, skew      183—184 189 192—193 199 263 302 357 361
Polynomial ring, twisted      227 237 344 345 369—370
Polynomial ring, twisted skew      366
Positive cone      298
Power associative      334
Power series, one variable      see also "Semigroup power series"
Power series, one variable, division ring      200—202
Power series, one variable, Laurent      202 205 206 211
Power series, one variable, ring      200 204—205 207 210 352
Prime algebra, ring      158—160
Prime element, invariant      347
Prime element, left      347
Primitive root of unity      133 137 150 161 264 285 361—362
Principal right ideal      187
Principal right ideal, domain = PRID      188 215—216 313—315 344 346 350—352
Principal right ideal, ring      187
Procesi, C.      153—154 155
Pseudo linear extension      242
Purely inseparable      100
p—Algebra      124
Quadratic algebra      335
Quadratic algebra, nonassociative      337
Quadratic form      11
Quadratic ring extension      40 288 322
Quartic extension      18
Quartic field      125 237 327—332
Quaternionic extension      20
Quaternions      1 49—51
Quaternions, generalized      20
Quaternions, real      6 49—51
Rational function field      89—90 118
Real closed      117
Relatively prime      53 345
Representation      4 21 25—26 89—90 135
Representation, right regular      5
Rinehart, G.      215
Root, left      362
Root, noncommutative polynomial      360
Root, right      362
Rotation group      10—17
Scalar product      7
Schacher, M.      xiii 153
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå