Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Lurie J.B., Enright P.J. — Classical Feedback Control With Matlab
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Classical Feedback Control With Matlab
Àâòîðû: Lurie J.B., Enright P.J.
Àííîòàöèÿ: Doubling as a text book and a reference guide, this volume describes design and implementation of feedback controllers for engineering systems. Special attention is given to the frequency-domain design methods based on loop shaping, Bode integrals, and nonlinear dynamic compensation. The first six chapters support a one-semester course in linear control; the rest of the book considers the issues of complex system simulation, robustness, global stability, and nonlinear control. Throughout, MATLAB and SPICE are used for simulation and design, but no preliminary experience with this software is required. Some knowledge of Laplace transform and frequency responses is assumed. The authors are members of the technical staff at California Institute of Technology.Book News, Inc.®, Portland, OR
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /×èñëåííûå ìåòîäû /Âåéâëåòû, îáðàáîòêà ñèãíàëîâ /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2000
Êîëè÷åñòâî ñòðàíèö: 456
Äîáàâëåíà â êàòàëîã: 04.03.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Lurie, A. I 271
LVDT 233—234
Lyapunov, A. M., First method 269—270
Lyapunov, A. M., Second method 270
Main-vernier system 39—40 405—406 417
Margins, safety 123—124 186 193 302
Margins, stability 63—67 390 394—396
Mason’s rule 41—42 277
Matching 231
Mathieu’s equation 238
MATLAB commands and program listings 7—9 13—14 60 100—104 117—118 133 140—141 150 180—181 228 251 280 364 376—378
Matrix, control-input 249
Matrix, decoupling 44—45 185
Matrix, estimator gain 254
Matrix, gain 249
Matrix, measurement 254
Matrix, output 249
Matrix, plant noise distribution 254
Matrix, system 249
MIMO system 43—46 passim
Minimum performance boundary 246
Minimum phase function 74—75 79 87 333 341 394
Mobility 206 passim
Mobility, effect on plant uncertainty 214—215
Motor 1—2 passim
Motor, linear 206 213
Motor, permanent magnet 213
Motor, series 218
Multiloop feedback system 36—37
Multiwindow controller 333—347
Nichols chart 10 25 246 327
Noise at actuator input 112—113
Noise at system’s output 99 111—112
Noise of resistance 171
Noise, process 254
Noise, sensor 254
Nominal plant 31 114—115
Non-collocated control 115 119 232—234
Nonlinear distortions 16—17
Nonlinear dynamic compensator, based on absolute stability 276—286
Nonlinear dynamic compensator, based on DF, with local feedback 306—309 338 340—347 405
Nonlinear dynamic compensator, based on DF, with parallel channels 305—306 337—340 344—347
Nonlinear interaction between local and common loops 311—312
Nonlinear product coefficient 17
Nonminimum phase shift (lag) 74 85—86 113 341 394
Norm, 255
Norm, quadratic 254
Norton’s theorem 212
Nyquist, H. 17
Nyquist, H., criterion 61—62 70
Nyquist, H., diagram 9—10
Nyquist, H., frequency 148
Nyquist, H., noise 171
Nyquist, H., stability 64—65 374
Octave 55
Offset voltage 173
On-off control 299
Op-amp 170—174
Op-amp, instrumentation 188
Op-amp, inverting 171
Op-amp, non-inverting 172—174
Op-amp, pinout 174
Op-amp, unity-gain frequency 170—171
Optical encoder 223 234
Optimality 94—96
Overshoot 15 54 59
Participation functions 332
Participation rules 332
Passim Decade 55
Passim Dither 262—264 418
Passim Dynamic nonlinearity 247
Payload 351 359
Phase plane 253
Phase-gain relation 79
PID controller 20 143—145 186 190—192 337—338 387 394
Piezoactuator 40 224—225 417—430
Pilot signal 259—260 262
Plant 1
Plant, collocated 116—118 232 260
Plant, flexible 105 110 115 116—119 120—121 143—145
Plant, identification 257—261
Plant, noise distribution matrix 254
Plant, nominal 31 115
Plant, non-collocated 116 119 232—233
Plant, template 245
Plant, tolerances (uncertainty) 114—115 213—214
Plant, unstable 67—69 119—120
Pole placement 247—248
Popov stability criterion 271—275
Popov, V. M 271
Port 216
Pre-warping 150
Prefilter 33—34 96—97 101—102
Process instability 322
Proof mass 235 360
PSPICE 145 299 399
QFT 245—247
Quality factor 137 186
Rate gyro 234 405
Rate limiter 179
Rate sensor 234
Rate-stabilized, rate feedback 153 217
RC-impedance chart 183
Redundancy 36 45
Reference 5 19 249 264 195—196
Regulator, current 25—26
Regulator, Linear Quadratic (LQR) 253—254
Regulator, Linear Quadratic Gaussian (LQG) 253—255
Regulator, voltage 5—6 passim
Relay, three position 266 293
Relay, two-position 299
Resistance, integral of 76—77
Resistance, load 213
Resistance, thermal 208
Resolver 233
Return difference 2 95 380
Return ratio 2 380
Return signal (fed back signal) 1
Rise time 54
Root locus 59—60 247—249 392—393
RTI (real time interrupt) 154
Rules for time-domain to frequency domain conversion 54—55 362
Rules, Masons 41—42 277
Rules, participation 329
Safety margins 123—124 302
Sallen-Key filter 176
Sample and hold 156
Sampling frequency and period 147—153
Saturation 16 178—179 266 293
Saturation in local and common loops 311—312
Saturation with frequency depended threshold 296
Schmitt trigger 298
Sensitivity 17—18
Sensitivity, Horowitz 18—19
Sensor noise 111—113
Series feedback 218 381—382
Series, Laurent 372
Servo, servomotor 2
Servomechanism 1 2
Settling time 54
Shaker 345
Siderostat 416
Signal-to-noise ratio 236
SIMULINK 222 227—229 250
Single-loop generic system 379
Source impedance 212
Spacecraft, passim Specifications 105
Spectral density 11—13
SPICE models or program listings 89—90 144—145 303—304 309 320—321
Stability of process 322
Stability, absolute 270—271
Stability, asymptotic 270
Stability, conditional 270
Stability, global 270 315—317
Stability, local 269
Stability, margins 63—67 390 394
Stability, margins, guard point 67
Stability, verification 315—317
Stall torque 213
Star tracker 234 262
State estimate 254
State variable filter 177
state variables 249
Static attractor 268
Static error 54 73
Static nonlinearity 267
Stiffness coefficient 207 208
Stray inductance, capacitance, stiffness, mass 97
Structural design 46 96 211—212
Subharmonics 327—329
Switched capacitor circuits 184—186
Symmetrical regulator 195—196
System with distributed parameters 230
System with unstable plant 67—69 119—120
System, absolutely stable 270—271 270
System, homing 12 59 99 185 279 282
System, linear time-variable (LTV) 158 238—239
System, main-vernier 39—40 405—406 417
System, matrix 249
System, multi-input multi-output (MIMO) 43—46
System, passim multiloop 36—37
System, passim Nyquist-stable 64—65 108—109 316 405
System, passim single-input single-output (SISO) 1
System, single-loop 1
System, tracking 4—5
System, Type 0, 1, 2 systems 72—74
Tachometer 234
Thevenin’s theorem 212
Three-valued function 325—326
Thrusters 343—345
TID controller 192—193
Time delay, rise, settling 54
Time variable (LTV) 158 238—239
Time-optimal control 343—345
Time-response to step command 15 passim
Torque, brake (stall) 213
Tracking 4—5 58 340—342 388
Transfer function 363
Transform, Laplace 362
Transform, Tustin 149—151
Transformer, balanced-to-unbalanced 189
Transformer, flowchart 225—226
transmission line 231
Transport delay (lag) 85 113—114
Tunnel effect accelerometer 308—309 347
Tustin A. 149 291
Tustin A., transform 149—151
Two-pole network, Cauer 180—181
Two-pole network, Foster 180—181
Two-port 220
Two-position relay 299
Type 0, Type 1, Type 2 systems 72—74
Unstable plant 67—69 119—120
Vanishing signals 270
Variables at links’ junction 212
Variables, state-space 249
VCO (voltage controlled oscillator) 2 268
Velocity, free running 213
Vernier actuator 39—40 405—406 417 207 228—229
Voice coil 40 206 228—229 416—419
Voltage feedback 217 382
Voltage regulator 5—6 406
Wave impedance 231
Weight function 79—80 255
Weighting matrix 253—254
Whetstone bridge 219 385
Wind disturbance 12
Wind up, antiwindup controllers 191 278—279 336—338
Wind up, phenomenum 336
Windows in multiwindow controllers 333—334
Windows, nonlinear 178—179
Yo-yo 343
Z-transform (Tustin, bilinear), C-code 152—153
Z-transform (Tustin, bilinear), tables 152
Zames, G 255
Ðåêëàìà