Авторизация
Поиск по указателям
Cannas da Silva A., Weinstein A. — Geometric Models for Noncommutative Algebra
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Geometric Models for Noncommutative Algebra
Авторы: Cannas da Silva A., Weinstein A.
Аннотация: The volume is based on a course, "Geometric Models for Noncommutative Algebras" taught by Professor Weinstein at Berkeley. Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, for example, the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces. In this work, the authors discuss several types of geometric objects (in the usual sense of sets with structure) that are closely related to noncommutative algebras.
Central to the discussion are symplectic and Poisson manifolds, which arise when noncommutative algebras are obtained by deforming commutative algebras. The authors also give a detailed study of groupoids (whose role in noncommutative geometry has been stressed by Connes) as well as of Lie algebroids, the infinitesimal approximations to differentiable groupoids.
Featured are many interesting examples, applications, and exercises. The book starts with basic definitions and builds to (still) open questions. It is suitable for use as a graduate text. An extensive bibliography and index are included.
Язык:
Рубрика: Математика /Алгебра /Абстрактная алгебра /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1998
Количество страниц: 184
Добавлена в каталог: 28.02.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Rank of a Poisson structure 18
Rank, Poisson structure with constant rank 17 20
Realization, injective 59
Realization, submersive 60
Realization, symplectic 59
Reeb foliation 94
Reeb, G. 94
Regular equivalence relation 34
Regular Poisson manifold, definition 17
Regular Poisson manifold, holonomy 24
Relation 88
Representation of a groupoid 102
Representation, pointwise faithful 8
Representation, representation equivalent 56
Rinehart, G. 115
Schouten — Nijenhuis bracket 12 135
Schroedinger, E. 151
Section of the normal bundle 109
Section, admissible section 106
Section, bisection 106
Section, distributional 79
Section, generalized 79 105
Semigroup 87 106 107
Smale, S. 42
Souriau, J.-M. 42 118
Spectrum 48
Splitting theorem 19
Squaring map 139 142 143
Strong topology 48
Structure constant 8
Structure function for a Lie algebroid 119
Structure function, definition 13
Structure function, transverse structure 24
Subgroup, isotropy 89
Subgroupoid as a relation 88
Subgroupoid, definition 88
Subgroupoid, diagonal 89
Subgroupoid, isotropy 89
Subgroupoid, wide 88
Submanifold, Poisson 36
Super-commutativity xiv
Super-commutativity of cup product 143
Super-derivation xv
Super-Jacobi identity 133 141 142
Super-Leibniz identity 133 134
Super-Lie algebra 133
Super-manifold 131
Super-space xv
Super-vector field 132
Symmetric algebra 1
Symmetric group 3 143
Symmetric tensor 3
Symmetrization 3
Symplectic, almost symplectic manifold 20
Symplectic, canonical coordinates 14
Symplectic, canonical structure on a cotangent bundle 36 119
Symplectic, Darboux's theorem 20 21
Symplectic, definition of symplectic structure 14
Symplectic, dual pair 53
Symplectic, E-symplectic form 135
Symplectic, E-symplectic structure 135
Symplectic, foliation 23
Symplectic, form 20
Symplectic, groupoid 127
Symplectic, leaf 23
Symplectic, Lie algebroid of a symplectic manifold 125
Symplectic, manifold 20
Symplectic, Poisson cohomology 23
Symplectic, realization 32 59
Symplectic, symplectically complete foliation 53
Tangent bundle as a Lie algebroid 114
Tangent bundle, complexified 62
Tensor algebra 1
Theorem, Darboux's 20 21
Theorem, double commutant 50
Theorem, Gel'fand — Naimark 48
Theorem, Lie's 17
Theorem, Splitting 19
Theorem, unique Haar measure 74
Topological groupoid 92
Topology of convergence of matrix elements 49
Topology of pointwise convergence 48
Topology on bounded operators 47 48
Topology, norm 47
Topology, strong 48
Topology, weak 49
Torus, irrational foliation 59
Torus, maximal 91
Torus, quantum 152
Transformation, groupoid 90
Transformation, Lie algebroid 114
Transitive groupoid 89
Transitive Lie algebroid 123 124
Translation maps 76
Transverse Lie algebra 24
Transverse Poisson structure 24
Transverse structure function 24
Uncertainty principle xvi
Unimodular group 75
Unit or identity 69
Unital 49
Universal algebra 1
Universal enveloping algebra, almost commutativity 5
Universal enveloping algebra, definition 1
Universal enveloping algebra, grading 3
Universal enveloping algebra, Poisson bracket 5
Universal property 1
Vector field, -related 29
Vector field, Hamiltonian 14 20
Vector field, left invariant 111
Vector field, odd xv
Vector field, Poisson 15
Vector field, set of hamiltonian vector fields 40
Vector field, set of Poisson vector fields 40
Vector fields tangent to a hypersurface 127
Vector fields tangent to the boundary 128
von Neumann algebra 49
von Neumann, J. 47 50 151
Weak topology 49
Weinstein, A. 19 26 33 34 126
Weyl algebra, afine invariance 152
Weyl algebra, automorphism 153
Weyl algebra, bundle 153
Weyl algebra, definition 149
Weyl algebra, derivation 152
Weyl algebra, filtration 158
Weyl algebra, flat connection 154
Weyl algebra, formal 150 158
Weyl algebra, Moyal — Weyl product 149 150
Weyl algebra, Weyl product 150
Weyl curvature 160
Weyl group 91
Weyl groupoid 91
Weyl product 150
Weyl symbol 151
Xu, P. 56
Y-tangent bundle 127
Yang — Baxter equation 135
Реклама