Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Cannas da Silva A., Weinstein A. — Geometric Models for Noncommutative Algebra
Cannas da Silva A., Weinstein A. — Geometric Models for Noncommutative Algebra



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Geometric Models for Noncommutative Algebra

Авторы: Cannas da Silva A., Weinstein A.

Аннотация:

The volume is based on a course, "Geometric Models for Noncommutative Algebras" taught by Professor Weinstein at Berkeley. Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, for example, the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces. In this work, the authors discuss several types of geometric objects (in the usual sense of sets with structure) that are closely related to noncommutative algebras.
Central to the discussion are symplectic and Poisson manifolds, which arise when noncommutative algebras are obtained by deforming commutative algebras. The authors also give a detailed study of groupoids (whose role in noncommutative geometry has been stressed by Connes) as well as of Lie algebroids, the infinitesimal approximations to differentiable groupoids.
Featured are many interesting examples, applications, and exercises. The book starts with basic definitions and builds to (still) open questions. It is suitable for use as a graduate text. An extensive bibliography and index are included.


Язык: en

Рубрика: Математика/Алгебра/Абстрактная алгебра/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1998

Количество страниц: 184

Добавлена в каталог: 28.02.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Groupoid, set of composable pairs      85
Groupoid, source      85
Groupoid, subgroupoid      88
Groupoid, symplectic groupoid      127
Groupoid, target      85
Groupoid, topological      92
Groupoid, transformation groupoid      90
Groupoid, transitive      89
Groupoid, trivial      87
Groupoid, Weyl groupoid      91
Groupoid, wide subgroupoid      88
Haar measure      74
Haar system      92 98
Haefliger, A.      95
Hamiltonian action      39 44
Hamiltonian function      40
Hamiltonian set of hamiltonian vector fields      40
Hamiltonian vector field      14 17 20
Hamiltonian vector field on a Lie algebroid      136
Hamiltonian, strongly      44
Hamiltonian, weakly      44
harmonic oscillator      63
Harrison cohomology      142
Heisenberg algebra      150
Hochschild cohomology, action of symmetric groups      143
Hochschild cohomology, algebraic structure      143
Hochschild cohomology, cup product      143
Hochschild cohomology, decomposition      143
Hochschild cohomology, definition      142
Hochschild cohomology, Gerstenhaber      134
Hochschild cohomology, Gerstenhaber bracket      143
Hochschild cohomology, squaring map      143
Hochschild complex      142
Hodge decomposition      156
Holonomy on a regular Poisson manifold      24
Holonomy, definition      45 93
Holonomy, description      93
Holonomy, equivalence relation      93
Holonomy, flat connection      104
Holonomy, groupoid      115
Holonomy, groupoid of a foliation      93 94
Holonomy, one-sided      95
Homogeneous, E-differential form      131
Homogeneous, E-multivector field      132
Hopf algebra, antipode      69
Hopf algebra, associativity of multiplication      70
Hopf algebra, co-unit or coidentity      69
Hopf algebra, coassociativity of comultiplication      70
Hopf algebra, commutative      72
Hopf algebra, comultiplication      69
Hopf algebra, definition      69
Hopf algebra, examples      69
Hopf algebra, multiplication      69
Hopf algebra, noncommutative      72
Hopf algebra, Poisson      72
Hopf algebra, quantum group      72
Hopf algebra, relation to groups      72
Hopf algebra, unit or identity      69
Infinitesimal deformation of a Poisson structure      137
Infinitesimal deformation, obstructions to continuing      138
Infinitesimal deformation, trivial      138
Infinitesimal neighborhood      xiii 155
Inner derivation      15 157
Integrability conditions      21
Integrability Jacobi identity      15
Integrability Newlander — Nirenberg theorem      120
Integrability of Lie algebroids      114 117
Intrinsic $L^p$ spaces      78
Intrinsic groupoid algebra      99
Irrational foliation      59
Isotropic      34
Isotropy, algebroid      113
Isotropy, subgroup      89
Isotropy, subgroupoid      89
Jacobi identity for elements of $A^2(V)$      142
Jacobi identity, definition      6
Jacobi identity, deformation of products      145 146
Jacobi identity, jacobiator      7 13 145
Jacobi identity, Poisson structure      12
Jacobi identity, super-Jacobi identity      133 141 142
Jacobi, C.      15
Jacobiator      7 13 145
Karasev, M.      33
Keel, S.      89
Kirillov, A.      23
Kontsevich, M.      144
Kostant, B.      42
Lakoff, G.      xiii
Lazard, M.      118
Leaf, breaking the leaves      27
Leaf, definition      93
Left invariant measure      74
Left invariant vector field      111
Leibniz identity for abstract products      145
Leibniz identity in the Weyl algebra      152
Leibniz identity, definition      6
Leibniz identity, deformation of products      146
Leibniz identity, Lie algebroid      113
Leibniz identity, Lie algebroid of a Poisson manifold      126
Leibniz identity, super-Leibniz identity      133
Lie algebra, action      8
Lie algebra, almost      7
Lie algebra, bundle of Lie algebras      114
Lie algebra, cohomology      132 142
Lie algebra, deformation      2
Lie algebra, degenerate      26
Lie algebra, non-degenerate      26
Lie algebra, representation      17
Lie algebra, structure constant      8
Lie algebra, super-Lie algebra      133
Lie algebra, transverse      24
Lie algebroid as a supermanifold      131
Lie algebroid of a Lie groupoid      114
Lie algebroid of a Poisson manifold      125
Lie algebroid of a symplectic manifold      125
Lie algebroid, cohomology      132
Lie algebroid, complex Lie algebroid      120
Lie algebroid, connection      124
Lie algebroid, curvature      124
Lie algebroid, definition      113
Lie algebroid, degree of an E-form      131
Lie algebroid, differential complex      136
Lie algebroid, differential geometry      131
Lie algebroid, dual      119
Lie algebroid, E-$\Pi$-cohomology      136
Lie algebroid, E-differential form      131
Lie algebroid, E-Gerstenhaber bracket      133
Lie algebroid, E-k-form      131
Lie algebroid, E-Lie derivative      113 133 137
Lie algebroid, E-Poisson bivector field      135
Lie algebroid, E-symplectic form      135
Lie algebroid, E-symplectic structure      135
Lie algebroid, examples      114 123
Lie algebroid, exterior differential algebra      131
Lie algebroid, Gerstenhaber algebra      132 133
Lie algebroid, hamiltonian vector field      136
Lie algebroid, history      115
Lie algebroid, homogeneous E-form      131
Lie algebroid, integrability      117
Lie algebroid, Leibniz identity      113
Lie algebroid, Lie-Poisson bracket      119
Lie algebroid, morphism      120
Lie algebroid, multivector field      132
Lie algebroid, orbits      113
Lie algebroid, Poisson bracket      136
Lie algebroid, Poisson cohomology      136
Lie algebroid, Poisson structure      134
Lie algebroid, Poisson vector field      137
Lie algebroid, properties of $d_E$      131
Lie algebroid, squaring map      139
Lie bracket      6
Lie derivative, Cartan's magic formula      21 126 159
Lie derivative, Lie algebroid      113 133 137
Lie group, modular character      75
Lie group, modular function      75
Lie group, unimodular      75
Lie groupoid, definition      93
Lie groupoid, Lie algebroid of a      114
Lie — Poisson bracket, definition      11
Lie — Poisson bracket, dual of a Lie algebroid      119
Lie — Poisson manifold, definition      11
Lie — Poisson manifold, hamiltonian action      39
Lie — Poisson manifold, Jacobi identity      13
Lie — Poisson manifold, Lie — Poisson bracket      11
Lie — Poisson manifold, normal form      20
Lie — Poisson manifold, rank      17
Lie's theorem      17
Lie, S.      8 9 17 40
Linear Poisson structure      14
Linearizable Poisson structure      25
Linearized Poisson structure      24
Liouville vector field      137
Local bisection      107
Lu, J.-H.      57
Mackenzie, K.      118
Mackey, G.      89
Maximal torus      91
Measurable groupoid      93
Measure, algebras of measures on groups      73
Measure, class      93
Measure, group algebra      73
Measure, Haar measure      74
Measure, left-invariant      74
Measure, quasi-invariant      74
Melrose, R.      127
Modular character      75
Modular function      75
Moebius band      94
Molino, P.      118
Moment map vs. momentum map      101
Moment map, groupoid action      101
Momentum map for a group action      42
Momentum map vs. moment map      101
Momentum map, definition      39 40
Momentum map, equivariance      42
Momentum map, first obstruction      40 43
Momentum map, second obstruction      41—43
Momentum, phase space      xv
Mori, S.      89
Morita equivalence      55 56
Morphism of groupoids      88
Moyal — Weyl product      149—151
Multilinear maps, brackets      142
Multilinear maps, symmetric      142
Multivector field, $\varphi$-related      30
Multivector field, definition      12
Multivector field, Lie algebroid      132
Naimark, M.      48
Newlander — Nirenberg theorem      120
Newton's method      156
Non-degenerate Lie algebra      26
Norm topology      47
Novikov, S.      95
Nunez, R.      xiii
Obstruction to a holomorphic connection      121
Obstruction to a momentum map      40—43
Obstruction to deformation of a Poisson structure      138
Obstruction to the Jacobi identity      7
Odd, differential forms      78
Odd, vector field      xv
One-sided holonomy      95
Operator, bounded      47
Operator, compact      48
Operator, product      151
Orbit of a Lie algebroid      113
Orbit, coadjoint      39
Orbit, groupoid      89
Outer derivation      15
Pair groupoid      87 94
Palais, R.      118
Permutation group      143
Phase space      xv
Planck's constant      146
Poincare — Birkhoff — Witt theorem and group algebras      81
Poincare — Birkhoff — Witt theorem, discussion      7
Poincare — Birkhoff — Witt theorem, proof      9
Poincare — Birkhoff — Witt theorem, statement      5
Poisson algebra      6
Poisson automorphism, definition      29
Poisson automorphism, group of Poisson automorphisms      29
Poisson bivector field on a Lie algebra      135
Poisson bivector field, definition      135
Poisson bivector field, E-Poisson bivector field      135
Poisson bivector field, exact      137
Poisson bracket, differential operators      149
Poisson bracket, Lie algebroid      136
Poisson bracket, universal enveloping algebra      5
Poisson cohomology on a Lie algebroid      136
Poisson cohomology, 0-th      16
Poisson cohomology, first      16
Poisson cohomology, symplectic case      23
Poisson Hopf algebra      72
Poisson Lie group, definition      72
Poisson Lie group, non-linearizability      26
Poisson manifold, almost symplectic      20
Poisson manifold, coisotropic      34
Poisson manifold, definition      12
Poisson manifold, Lie algebroid of a      125
Poisson manifold, regular      17
Poisson manifold, symplectic      20
Poisson map, complete      31
Poisson map, definition      29
Poisson quotient      34
Poisson relation      34
Poisson structure on a Lie algebroid      134
Poisson structure, almost      12
Poisson structure, canonical coordinates      13
Poisson structure, definition      12
Poisson structure, formal deformation      137 138
Poisson structure, infinitesimal deformation      137
Poisson structure, Lie's theorem      17
Poisson structure, linear      14
Poisson structure, linearization      25
Poisson structure, linearized      24
Poisson structure, normal form      17
Poisson structure, obstructions to deformation      138
Poisson structure, structure functions      13
Poisson structure, transverse      24
Poisson submanifold      36
Poisson tensor      12
Poisson vector field, definition      15
Poisson vector field, Lie algebroid      137
Poisson vector field, set of hamiltonian vector fields      40
Poisson's theorem      15 19
Poisson, S.-D.      14 15
Poisson-algebra homomorphism      29
Pradines, J.      115
Principal groupoid      90
Product of groupoids      87
Product, coproduct      69
Product, star      151
Product, von Neumann      151
Quantization, classification      161
Quantization, deformation      155
Quantization, Fedosov      161
Quantization, patching from local      155
Quantum group      72
Quantum operator      151
Quasi-invariant measure      74
Rank of a Lie algebra      18
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте