Авторизация
Поиск по указателям
Cannas da Silva A., Weinstein A. — Geometric Models for Noncommutative Algebra
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Geometric Models for Noncommutative Algebra
Авторы: Cannas da Silva A., Weinstein A.
Аннотация: The volume is based on a course, "Geometric Models for Noncommutative Algebras" taught by Professor Weinstein at Berkeley. Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, for example, the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces. In this work, the authors discuss several types of geometric objects (in the usual sense of sets with structure) that are closely related to noncommutative algebras.
Central to the discussion are symplectic and Poisson manifolds, which arise when noncommutative algebras are obtained by deforming commutative algebras. The authors also give a detailed study of groupoids (whose role in noncommutative geometry has been stressed by Connes) as well as of Lie algebroids, the infinitesimal approximations to differentiable groupoids.
Featured are many interesting examples, applications, and exercises. The book starts with basic definitions and builds to (still) open questions. It is suitable for use as a graduate text. An extensive bibliography and index are included.
Язык:
Рубрика: Математика /Алгебра /Абстрактная алгебра /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1998
Количество страниц: 184
Добавлена в каталог: 28.02.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Groupoid, set of composable pairs 85
Groupoid, source 85
Groupoid, subgroupoid 88
Groupoid, symplectic groupoid 127
Groupoid, target 85
Groupoid, topological 92
Groupoid, transformation groupoid 90
Groupoid, transitive 89
Groupoid, trivial 87
Groupoid, Weyl groupoid 91
Groupoid, wide subgroupoid 88
Haar measure 74
Haar system 92 98
Haefliger, A. 95
Hamiltonian action 39 44
Hamiltonian function 40
Hamiltonian set of hamiltonian vector fields 40
Hamiltonian vector field 14 17 20
Hamiltonian vector field on a Lie algebroid 136
Hamiltonian, strongly 44
Hamiltonian, weakly 44
harmonic oscillator 63
Harrison cohomology 142
Heisenberg algebra 150
Hochschild cohomology, action of symmetric groups 143
Hochschild cohomology, algebraic structure 143
Hochschild cohomology, cup product 143
Hochschild cohomology, decomposition 143
Hochschild cohomology, definition 142
Hochschild cohomology, Gerstenhaber 134
Hochschild cohomology, Gerstenhaber bracket 143
Hochschild cohomology, squaring map 143
Hochschild complex 142
Hodge decomposition 156
Holonomy on a regular Poisson manifold 24
Holonomy, definition 45 93
Holonomy, description 93
Holonomy, equivalence relation 93
Holonomy, flat connection 104
Holonomy, groupoid 115
Holonomy, groupoid of a foliation 93 94
Holonomy, one-sided 95
Homogeneous, E-differential form 131
Homogeneous, E-multivector field 132
Hopf algebra, antipode 69
Hopf algebra, associativity of multiplication 70
Hopf algebra, co-unit or coidentity 69
Hopf algebra, coassociativity of comultiplication 70
Hopf algebra, commutative 72
Hopf algebra, comultiplication 69
Hopf algebra, definition 69
Hopf algebra, examples 69
Hopf algebra, multiplication 69
Hopf algebra, noncommutative 72
Hopf algebra, Poisson 72
Hopf algebra, quantum group 72
Hopf algebra, relation to groups 72
Hopf algebra, unit or identity 69
Infinitesimal deformation of a Poisson structure 137
Infinitesimal deformation, obstructions to continuing 138
Infinitesimal deformation, trivial 138
Infinitesimal neighborhood xiii 155
Inner derivation 15 157
Integrability conditions 21
Integrability Jacobi identity 15
Integrability Newlander — Nirenberg theorem 120
Integrability of Lie algebroids 114 117
Intrinsic spaces 78
Intrinsic groupoid algebra 99
Irrational foliation 59
Isotropic 34
Isotropy, algebroid 113
Isotropy, subgroup 89
Isotropy, subgroupoid 89
Jacobi identity for elements of 142
Jacobi identity, definition 6
Jacobi identity, deformation of products 145 146
Jacobi identity, jacobiator 7 13 145
Jacobi identity, Poisson structure 12
Jacobi identity, super-Jacobi identity 133 141 142
Jacobi, C. 15
Jacobiator 7 13 145
Karasev, M. 33
Keel, S. 89
Kirillov, A. 23
Kontsevich, M. 144
Kostant, B. 42
Lakoff, G. xiii
Lazard, M. 118
Leaf, breaking the leaves 27
Leaf, definition 93
Left invariant measure 74
Left invariant vector field 111
Leibniz identity for abstract products 145
Leibniz identity in the Weyl algebra 152
Leibniz identity, definition 6
Leibniz identity, deformation of products 146
Leibniz identity, Lie algebroid 113
Leibniz identity, Lie algebroid of a Poisson manifold 126
Leibniz identity, super-Leibniz identity 133
Lie algebra, action 8
Lie algebra, almost 7
Lie algebra, bundle of Lie algebras 114
Lie algebra, cohomology 132 142
Lie algebra, deformation 2
Lie algebra, degenerate 26
Lie algebra, non-degenerate 26
Lie algebra, representation 17
Lie algebra, structure constant 8
Lie algebra, super-Lie algebra 133
Lie algebra, transverse 24
Lie algebroid as a supermanifold 131
Lie algebroid of a Lie groupoid 114
Lie algebroid of a Poisson manifold 125
Lie algebroid of a symplectic manifold 125
Lie algebroid, cohomology 132
Lie algebroid, complex Lie algebroid 120
Lie algebroid, connection 124
Lie algebroid, curvature 124
Lie algebroid, definition 113
Lie algebroid, degree of an E-form 131
Lie algebroid, differential complex 136
Lie algebroid, differential geometry 131
Lie algebroid, dual 119
Lie algebroid, E- -cohomology 136
Lie algebroid, E-differential form 131
Lie algebroid, E-Gerstenhaber bracket 133
Lie algebroid, E-k-form 131
Lie algebroid, E-Lie derivative 113 133 137
Lie algebroid, E-Poisson bivector field 135
Lie algebroid, E-symplectic form 135
Lie algebroid, E-symplectic structure 135
Lie algebroid, examples 114 123
Lie algebroid, exterior differential algebra 131
Lie algebroid, Gerstenhaber algebra 132 133
Lie algebroid, hamiltonian vector field 136
Lie algebroid, history 115
Lie algebroid, homogeneous E-form 131
Lie algebroid, integrability 117
Lie algebroid, Leibniz identity 113
Lie algebroid, Lie-Poisson bracket 119
Lie algebroid, morphism 120
Lie algebroid, multivector field 132
Lie algebroid, orbits 113
Lie algebroid, Poisson bracket 136
Lie algebroid, Poisson cohomology 136
Lie algebroid, Poisson structure 134
Lie algebroid, Poisson vector field 137
Lie algebroid, properties of 131
Lie algebroid, squaring map 139
Lie bracket 6
Lie derivative, Cartan's magic formula 21 126 159
Lie derivative, Lie algebroid 113 133 137
Lie group, modular character 75
Lie group, modular function 75
Lie group, unimodular 75
Lie groupoid, definition 93
Lie groupoid, Lie algebroid of a 114
Lie — Poisson bracket, definition 11
Lie — Poisson bracket, dual of a Lie algebroid 119
Lie — Poisson manifold, definition 11
Lie — Poisson manifold, hamiltonian action 39
Lie — Poisson manifold, Jacobi identity 13
Lie — Poisson manifold, Lie — Poisson bracket 11
Lie — Poisson manifold, normal form 20
Lie — Poisson manifold, rank 17
Lie's theorem 17
Lie, S. 8 9 17 40
Linear Poisson structure 14
Linearizable Poisson structure 25
Linearized Poisson structure 24
Liouville vector field 137
Local bisection 107
Lu, J.-H. 57
Mackenzie, K. 118
Mackey, G. 89
Maximal torus 91
Measurable groupoid 93
Measure, algebras of measures on groups 73
Measure, class 93
Measure, group algebra 73
Measure, Haar measure 74
Measure, left-invariant 74
Measure, quasi-invariant 74
Melrose, R. 127
Modular character 75
Modular function 75
Moebius band 94
Molino, P. 118
Moment map vs. momentum map 101
Moment map, groupoid action 101
Momentum map for a group action 42
Momentum map vs. moment map 101
Momentum map, definition 39 40
Momentum map, equivariance 42
Momentum map, first obstruction 40 43
Momentum map, second obstruction 41—43
Momentum, phase space xv
Mori, S. 89
Morita equivalence 55 56
Morphism of groupoids 88
Moyal — Weyl product 149—151
Multilinear maps, brackets 142
Multilinear maps, symmetric 142
Multivector field, -related 30
Multivector field, definition 12
Multivector field, Lie algebroid 132
Naimark, M. 48
Newlander — Nirenberg theorem 120
Newton's method 156
Non-degenerate Lie algebra 26
Norm topology 47
Novikov, S. 95
Nunez, R. xiii
Obstruction to a holomorphic connection 121
Obstruction to a momentum map 40—43
Obstruction to deformation of a Poisson structure 138
Obstruction to the Jacobi identity 7
Odd, differential forms 78
Odd, vector field xv
One-sided holonomy 95
Operator, bounded 47
Operator, compact 48
Operator, product 151
Orbit of a Lie algebroid 113
Orbit, coadjoint 39
Orbit, groupoid 89
Outer derivation 15
Pair groupoid 87 94
Palais, R. 118
Permutation group 143
Phase space xv
Planck's constant 146
Poincare — Birkhoff — Witt theorem and group algebras 81
Poincare — Birkhoff — Witt theorem, discussion 7
Poincare — Birkhoff — Witt theorem, proof 9
Poincare — Birkhoff — Witt theorem, statement 5
Poisson algebra 6
Poisson automorphism, definition 29
Poisson automorphism, group of Poisson automorphisms 29
Poisson bivector field on a Lie algebra 135
Poisson bivector field, definition 135
Poisson bivector field, E-Poisson bivector field 135
Poisson bivector field, exact 137
Poisson bracket, differential operators 149
Poisson bracket, Lie algebroid 136
Poisson bracket, universal enveloping algebra 5
Poisson cohomology on a Lie algebroid 136
Poisson cohomology, 0-th 16
Poisson cohomology, first 16
Poisson cohomology, symplectic case 23
Poisson Hopf algebra 72
Poisson Lie group, definition 72
Poisson Lie group, non-linearizability 26
Poisson manifold, almost symplectic 20
Poisson manifold, coisotropic 34
Poisson manifold, definition 12
Poisson manifold, Lie algebroid of a 125
Poisson manifold, regular 17
Poisson manifold, symplectic 20
Poisson map, complete 31
Poisson map, definition 29
Poisson quotient 34
Poisson relation 34
Poisson structure on a Lie algebroid 134
Poisson structure, almost 12
Poisson structure, canonical coordinates 13
Poisson structure, definition 12
Poisson structure, formal deformation 137 138
Poisson structure, infinitesimal deformation 137
Poisson structure, Lie's theorem 17
Poisson structure, linear 14
Poisson structure, linearization 25
Poisson structure, linearized 24
Poisson structure, normal form 17
Poisson structure, obstructions to deformation 138
Poisson structure, structure functions 13
Poisson structure, transverse 24
Poisson submanifold 36
Poisson tensor 12
Poisson vector field, definition 15
Poisson vector field, Lie algebroid 137
Poisson vector field, set of hamiltonian vector fields 40
Poisson's theorem 15 19
Poisson, S.-D. 14 15
Poisson-algebra homomorphism 29
Pradines, J. 115
Principal groupoid 90
Product of groupoids 87
Product, coproduct 69
Product, star 151
Product, von Neumann 151
Quantization, classification 161
Quantization, deformation 155
Quantization, Fedosov 161
Quantization, patching from local 155
Quantum group 72
Quantum operator 151
Quasi-invariant measure 74
Rank of a Lie algebra 18
Реклама