Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Hadlock C.R. — Field theory and its classical problems
Hadlock C.R. — Field theory and its classical problems



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Field theory and its classical problems

Автор: Hadlock C.R.

Аннотация:

From author: "I wrote this book for myself.
I wanted to piece together carefully my own path through Galois Theory, a subject whose mathematical centrality and beauty I had often glimpsed, but one which I had never properly organized in my own mind. I wanted to start with simple, interesting questions and solve them as quickly and directly as possible. If related interesting questions arose along the way, I would deal with them too, but only if they seemed irresistible. I wanted to avoid generality for its own sake, and, as far as practicable, even generality that could only be appreciated in retrospect. Thus, I approached this project as an inquirer rather than as an expert, and I hope to share some of the sense of discovery and excitement I experienced. There is great mathematics here.
In particular, the book presents an exposition of those portions of classical field theory which are encountered in the solution of the famous geometric construction problems of antiquity and the problem of solving polynomial equations by radicals..."


Язык: en

Рубрика: Математика/

Серия: Сделано в холле

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1978

Количество страниц: 336

Добавлена в каталог: 04.12.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Symmetries      127
Taylor's theorem for polynomials      197 310
Taylor, Angus E.      220
Terkelson, Frode      58
Transcendence base      292
Transcendence, of $\pi$      48
Transcendence, of e      56 248
Transcendental extension      72
Transitive group      169 173 300
Transposition      45 46 167 242
Tripling the cube      26 232
Trisectible angles, countable set      84 233
Trisection of an angle      2 26 97 120
Van der Waerden, B.L.      121 179
Vandermonde determinant      155 194 256
Vector space      72 79 257
Wantzel, P.L.      3 119 120
Zorn's lemma      290 291
Zuckerman, Herbert S.      120
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте