Авторизация
Поиск по указателям
Hadlock C.R. — Field theory and its classical problems
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Field theory and its classical problems
Автор: Hadlock C.R.
Аннотация: From author: "I wrote this book for myself.
I wanted to piece together carefully my own path through Galois Theory, a subject whose mathematical centrality and beauty I had often glimpsed, but one which I had never properly organized in my own mind. I wanted to start with simple, interesting questions and solve them as quickly and directly as possible. If related interesting questions arose along the way, I would deal with them too, but only if they seemed irresistible. I wanted to avoid generality for its own sake, and, as far as practicable, even generality that could only be appreciated in retrospect. Thus, I approached this project as an inquirer rather than as an expert, and I hope to share some of the sense of discovery and excitement I experienced. There is great mathematics here.
In particular, the book presents an exposition of those portions of classical field theory which are encountered in the solution of the famous geometric construction problems of antiquity and the problem of solving polynomial equations by radicals..."
Язык:
Рубрика: Математика /
Серия: Сделано в холле
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1978
Количество страниц: 336
Добавлена в каталог: 04.12.2010
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
, automorphisms of 129 291
Abel, Niels Henrik 5 177 178
Abel, theorem of 165 172 181
Abelian group 138
Adamson, I.T. 179
Affine plane curve 186
Alexanderson, Gerald L. 120 179
Algebraic extension 72 79 80 258
Algebraic numbers 35
Algebraic numbers, countability 39 239
Algebraic numbers, form a field 36 46 80 241 259
Algebraically independent elements 141 211 216
Alternating function 243
Analytic, at a point 185
Analytic, at infinity 185
Analytic, at zero 184
Angles with rational degree measure, constructibility 119 275
Archibald, R.C. 120
Argument of a complex number 87
Artin, E. 127 177 178 179
Automorphisms 128
Automorphisms of 141 290 291
Automorphisms of 141 290
Automorphisms, associativity 130
Automorphisms, commutativity 129
Automorphisms, extensions of 141 290 295
Automorphisms, group of 131
Automorphisms, identity 129
Automorphisms, inverse 130
Basic Hilbert set 210 315
Bell, E.T. 7
Belonging to an exponent modulo p 102
Bieberbach, Ludwig 57
Birkhoff, Garrett 58 179
Bisection of an angle 30 232
Boyer, Carl 7
Brown, James W. 58 220
Cajori, Florian 178
Cancellation property, for polynomials 70
Cancellation property, modulo n 99
Cardano, Girolamo 178
Chain 290
Chain rule 56 247
Churchill, Ruel V. 58 220
Circle in a field 16
Clark, Allan 120 179
Closed 12
Coefficient field 126
Commutator 171
Complementary m-sets 108
Complementary periods 108
Completely reducible 62
Complex conjugate 80
Complex conjugate roots, of polynomials over 80 261
Complex conjugation, automorphism 129
Composition series 152
Congruences 98
Conjugacy, equivalence relation 147 150 294
Conjugacy, of elements 137
Conjugacy, of field extensions 147 294
Conjugacy, of subgroups 147 294
Constructibility 11 57 92
Constructibility and degree 81
Constructibility, compass alone 57
Constructibility, degree condition not sufficient 127 218 282
Constructibility, necessary and sufficient condition 21 94
Constructibility, necessary condition 95
Coset 133 135 284
Courant, Richard 57
Coxeter, H.S.M. 120
Cramer's rule 156
Cubic equation 126 176 177 279 304
Cubic equation, discriminant 177 305
Cubic equation, solvability by real radicals 177 307
Curiosity 24
CYCLE 166
Cyclic group 134
Cyclic group, generator 135
Cyclic group, subgroups 136 286
Cyclotomic polynomials 96 174 252
Cyclotomic polynomials, Galois group 140
Cyclotomic polynomials, irreducibility 119 120 277
Dedekind, R. 177 178
Degree, of a field extension 72
Degree, of a polynomial in one variable 34
Degree, of a polynomial in several variables 39 40
Degree, of a simple extension 74
Degree, of a succession of field extensions 78
Degree, of an algebraic number over a field 73
Dehn, Edgar 178
del Ferro, Scipione 5
Delian problem 3
Dense 210 315
Derivatives of complex functions 49 50 55
Diamond, Harold, G. 58
Dickson, L.E. 120 178
Discriminant of a cubic 177 305
Divisibility of polynomials 34
Division algorithm, for 66 70 250
Division algorithm, for polynomials 60
Divisor 61
Doerge, Karl 220
Doubling the cube 2 24
Duarte, F.J. 4 58
e, transcendence of 56 248
Eichler, Martin 220
Eigenvalue 37
Eisenstein irreducibility criterion 64
Elementary symmetric functions 41
Elliptic functions 178
Equivalence relation 99 150
Euclidean algorithm, for 66 70 250
Euclidean algorithm, for polynomials 67
Euler -function 85 100
Exponential function, complex argument 47
Extension 58 71 72
Extension, algebraic 72 79 258
Extension, degree of 72
Extension, finite 71 75
Extension, multiple 71 72
Extension, normal 141 142
Extension, radical 124
Extension, simple 71 72
Extension, transcendental 72
Factorization into irreducible factors 69
Factorization into irreducible factors, algorithm for 71 255
Fermat primes 97
Fermat's theorem 100
Ferrari, Ludovico 5
Field 12 34 177
Field isomorphism 290
Finite extension 71 75
Finite fields 120
Finkbeiner, Daniel T., II 120
Fixed field, of a group 139
Fixed field, of an automorphism 139
fun 8
Fundamental constructions 9
Fundamental Galois pairing 145
Fundamental theorem of algebra 34 57
Fundamental theorem of calculus 50 247
Fundamental Theorem of Galois Theory 147 149
Fundamental Theorem on Symmetric Functions 41
g.c.d. 66
Gaal, Lisl 179
Galois group 140
Galois group, computation of 164 165 174 178 298
Galois pairing 145
Galois, Evariste 5 177 178
Galois, theorem of 151 152
Gauss, Carl Friedrich 3 57 107 119 120
Gauss, lemma of 62 197 310
Generator 134
Generic polynomial of degree n 216
Goldstein, Larry Joel 179
Greatest common divisor, of polynomials 66
Greek problems 2 9
Group 131
Group, of a field extension 136
Hasse, Helmut 179
Hermes 120
Hermite, C. 178
Herstein, I.N. 179
Hewitt, Edwin 58
Highest term 42
Hilbert set 210 315
Hilbert, David 219 220
Hilbert, irreducibility theorem of 182 198 199 207
Hillman, Abraham P. 120 179
Identity theorem for power series 183
Imaginary part 47
Index of a subgroup 133
Intermediate fields 80
Intermediate fields, finite number 80 150 261 294
Intersection of fields 23 223
Intestinal fortitude 118
Invariant subgroup 147
Irreducibility, of 165 300
Irreducibility, of a polynomial in one variable 61
Irreducibility, of a polynomial in several variables 186
Irreducibility, of cyclotomic polynomials 119 120 277
Irreducibility, over 64
Irreducibility, over 80 261
Irreducible polynomial, no multiple roots 71 178 254
Isomorphism of a field 290
Jacobson, Nathan 58 120 121
K-cycle 167
Kiernan, B. Melvin 7 179
Klein, Felix 58
Kline, Morris 7 178
kronecker 178
Kronecker's criterion 207 210
Kronecker's specialization 204 210 314
Lagrange, Joseph 5
Lagrange, theorem of 132
Landau, Edmund 57 120 121
Lang, Serge 220
Leading coefficient 38
Levinson, Norman 58 220
Lindemann, F. 3 58
Line in a field 16
M-set 108
Mac Lane, Saunders 58 179
Mann, W. Robert 220
McCoy, N.H. 120
Minimal polynomial 73
Modulo n 98
Modulus, of a complex number 55 86
Monic polynomial 38
Multiple extension 71 72
Multiple root 35
Multiple root, derivative at 39 240
Multiple root, impossible for irreducible polynomials 71 178 254
Nering, Evar D. 120
Niven, Ivan 58 120
Normal extension 141
Normal extension, equivalent properties 142
Normal subgroup 147
nth roots of unity 84
Olmsted, John M. 220
Order, modulo n 102 272
Order, of a group 131
Ore, Oysten 6
Period of an m-set 108
Permutation 40 167
Permutation, even and odd 47 242
Permutation, sequence of transpositions 46 242
Pi ( ), transcendence of 48
Pierpont, James 178 220
Plane of a field 16
Polar representation 87
Pollard, Harry 58
Polynomial, in one variable 34
Polynomial, in several variables 39
Power series 182
Primes, infinite number 56 248
Primitive polynomial 71 254
Primitive roots modulo p 101
Primitive roots of unity 85
Primitive roots of unity, degree of 91 92
Proper divisor 61
Puiseux expansions 220
Quadratic equation 176 304
Quadratic extension 13 94
Quadrupling the cube 26 232
Quartic equation 126 177 281 307
Quartic equation, resolvent cubic 282
Quintic equation 172 173 301
Quintisection of an angle 31 84 98 233 262
Quotient 60
Radical extension 124
Radius of convergence 182
Rational functions 188
Rational operations 12
Rational roots theorem 39 237
Real part 47
Real point of an algebraic curve 197 313
Reciprocal power series 185
Redheffer, Raymond 58 220
Regular 17-gon, constructibility 113
Regular pentagon, constructibility 98 119 270 273
Regular polygons, constructibility 3 82 92 104 175
Regular polygons, necessary condition for constructibility 97 119 277
Regular polygons, sufficient condition for constructibility 106
Regular values 186
Regular values at infinity 199
Regular values, existence of 187
Relatively prime polynomials 68
Relaxation 80
Remainder 60
Resolvent cubic 282
Robbins, Herbert 57
Robinson, Abraham 120
Root functions 186
Root functions, analytic 190
Root of a polynomial 34
Roots of complex numbers 84
Ruffini, P. 5 177
Seidenberg, A. 220
Simple extension 71 72
Smallest field with a given property 23 223
Smith, David Eugene 7 178
Solution by radicals 4 123
Solutions to problems 8 221
Solvability by radicals 124 126 152 210 218
Solvable equations 174
Solvable groups 152
Splitting field 80 124 142
Splitting field, degree of 126 260 280
Squaring the circle 2 31 55
Steinberg, R. 58
Stewart, Ian 179
Stromberg, Karl 58
Subgroup 132
Symmetric functions, elementary 41
Symmetric functions, fundamental theorem on 41
Symmetric group 169
Symmetric group, not solvable 171
Symmetric group, polynomials with 171 173 174 176 181 220 302 303 304
Symmetric polynomial 40
Реклама