Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Wright S. J. — Primal-dual interior-point methods
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Primal-dual interior-point methods
Àâòîð: Wright S. J.
Àííîòàöèÿ: In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1987
Êîëè÷åñòâî ñòðàíèö: 310
Äîáàâëåíà â êàòàëîã: 05.11.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
linear complementarity problem 173
factorization 31 54 63 232 247—249
56 122 128 130 145—146 148 149 152—154 204
, definition of 56
, example of noncontinuity 152—154
Adjacency graph 214—216
Adjacency graph, elimination step for 214—215
Affine-scaling algorithm, primal 22 42—44
Affine-scaling algorithm, primal-dual 44—45
Affine-scaling direction, primal-dual see “Newton step pure”
Algorithm IPF 107—125 128 177 180 185 187 190 224 262
Algorithm IPF, complexity of 112 121
Algorithm IPF, convex programming form of 166—168
Algorithm IPF, definition of 109—110
Algorithm IPF, flexibility in line search 110 125
Algorithm LPF 43 90 96 98 100 102 103 107 108 111 124 128 136 long-step”)
Algorithm LPF+ 136—145
Algorithm LPF+, definition of 138—139
Algorithm LPF+, infeasible variant of 154
Algorithm LPF, definition of 96 97
Algorithm MPC 204 206
Algorithm MPC, definition of 195—198
Algorithm MPC, Shamanskii’s algorithm and 199
Algorithm MPC, trajectory following and 201—202
Algorithm PC 84 92 93 95 96 102 103 105 128 predictor-corrector
Algorithm PC, definition of 93
Algorithm PC, LCP form of 159 160
Algorithm PC, superlinear convergence of 128 135—136 145
Algorithm PR 67 68 70—72 79 81
Algorithm PR, definition of 67—68
Algorithm S3 198—199 (see also “Shamanskii’s algorithm”)
Algorithm SPF 84 88 90 91 93 96 102—105 short-step”)
Algorithm SPF, definition of 86
AMPL 258
Analytic center, weighted 42
Armijo condition see “Sufficient decrease condition”
Augmented system form of step equations 16 17 210 220—221 227 229 230 235 261 factorizations
Barrier function, logarithmic 40 43
Barrier function, logarithmic, defines central path 37 40
Barrier function, logarithmic, for linear program 37 40—43 47
Barrier function, logarithmic, KKT conditions for 39
Barrier function, logarithmic, strict convexity of 37
Basic feasible points 33 54 56
Basis 32—34
Basis, optimal 33 (see also “Vertex solution”)
Basis, optimal, recovery of 57 150—152 225—226
Bounds on variables, upper 226—228
BPMPD 232 258—259
Callable routines 258
Cauchy sequence 144 145
Centering parameter ( ) 7—8 10—12 67—68 79 83—86 91—93 95—97 104 108 137 158 186 189 193—196 198 199 201 205-206 249
Centering parameter ( ), adaptive choice of 14 15
Central path 7—9 14 30 43 85 152 153 196 225
Central path, existence of 36—40 69
Central path, geometry of 45 154 203 204
Central path, LCP form of 159
Central path, neighborhoods of 9—10 83—85 90—100 129 174 225
Central path, neighborhoods of, 9 19 43 84 85 96—105 108 130 133 135 137 144 146 147 155 159
Central path, neighborhoods of, 9 10 43 84—92 94—98 103—105 135 159
Central path, neighborhoods of, 84
Central path, neighborhoods of, infeasible 12 109 111 134 166 186 190 199 203 205
Central path, relationship to KKT conditions 7 36 83
Central path, SDP form of 171
Cholesky factorization, sparse 17 211—221 228—230 234 235
Cholesky factorization, sparse, dense column handling 17 219 220 233—234 259 260
Cholesky factorization, sparse, multiprocessor implementation 212 234—235
Cholesky factorization, sparse, small pivot handling 17 216 219 230 232—233
Cholesky factorization, sparse, small pivot handling, diagonal pivoting 218 235 236
Cholesky factorization, sparse, small pivot handling, skipping 218—219
Cholesky factorization, sparse, stability of 212 216
Combinatorial optimization 14 22 170
Compact set 39 186
Complementarity 4 7 23 158
complexity 21 239
Complexity, algebraic 50 60
Complexity, average-case 50 51 57
Complexity, bit 50 51 60
Complexity, general references for 49
Complexity, interior-point methods and 49
Complexity, polynomial 1 17—18 34 44 45 61—62 66—68 70 77- 80 84 85 87—88 90 95—97 100 104 108 109 112 114 159 168 185
Complexity, practical performance and 58
Complexity, problem size 51
Complexity, worst-case 50 51 57
Condition number 212 217 247
Conditioning of coefficient matrices 216—218 220
Conjugate gradient algorithm, preconditioned 234 260 262
Constraint qualification 165 241
Convex functions 164 168 240 242 250
Convex programming 157 164—167 243 250 261
Convex sets 164 167 240 242
Corrector steps 85 92 93 95 105 194—197 199 202 203 206 207
Corrector steps, multiple 199 202—204 259 260
CPLEX Parallel Barrier 234
CPLEX/Barrier 226 232 259
CPLEX/Simplex 232
Cramer’s Rule 53
Crossover to simplex see “Basis optimal recovery
Data string see “Problem data”
Degenerate LCP 173—174
Degenerate LCP, no superlinear convergence 174
Degree of a node 213 214
Dense matrices 17 189
Diagonal matrices 16 89 130 131 217 227 246 249 261
Dikin’s algorithm see “Affine-scaling algorithm primal”
Divergence of iterates 177 185 188
Dual degenerate linear programs 174
Dual slack variables 3
Dual variables 3
Duality measure ( ), definition of 7
Duality theory 2—4 23—29
Efficient algorithms see “Polynomial algorithms”
Eigenvalues 217
Ellipsoid algorithm 18 49—51 53 57
Exponential algorithms 50
Farkas’s lemma 24 34—35 45
Fast step 138—142 144
Feasible set, dual 23
Feasible set, existence of solutions and 24—26
Feasible set, monotone LCP and 159
Feasible set, polygonal form of 33 54 55 57
Feasible set, primal 3 23 33
Feasible set, primal-dual ( ) 5 9 23 162 185 187—188
Fill-in 212—213 235
Finite termination 55—57 60 62 127 128 146—149 154 174 204 225
Finite termination, superlinear convergence and 149
Floating-point arithmetic 57 59 62
Floating-point arithmetic, error analysis of 59
Framework PD 8 11 14 15 18 67 84 86 92 158 170 193 202
Framework PD, LCP form of 158
Free variables 17 221 228—230 258
Free variables, splitting of 22 46 163 174 226 228—230
Full rank of 31—32 37 54 63 155 186 191 211 217
Function long-step 137 139 141 142
GAMS 258
Gaussian elimination 31
Geometric linear complementarity problem 173
Global convergence 12 67 88 111 128 159
Goldman — Tucker theorem 21 162 182 241 245
Goldman — Tucker theorem, proof of 35—36
Goldman — Tucker theorem, statement of 28
hessian 240
Hoffman’s lemma 124 148 248—249
Homogeneous problem, definition of 180
Homogeneous self-dual (HSD) formulation 107 178 183—185
Homogeneous self-dual (HSD) formulation, definition of 183
Homogeneous self-dual (HSD) formulation, detection of infeasibility 185
Homogeneous self-dual (HSD) formulation, implementation of 190
Homogeneous self-dual (HSD) formulation, recovery of primal-dual solution 185
Homogeneous self-dual (HSD) formulation, simplified 174 178—183 185
Homogeneous self-dual (HSD) formulation, simplified, detection of infeasibility 182 183
Homogeneous self-dual (HSD) formulation, simplified, implementation of 188—190
Homogeneous self-dual (HSD) formulation, simplified, lack of strictly feasibility 181
Homogeneous self-dual (HSD) formulation, simplified, recovery of primal-dual solution 181—182
HOPDM 203 232 259—260
Horizontal linear complementarity problem (hLCP) 160—162
Horizontal linear complementarity problem (hLCP), strict complementarity and 162
Indicators 154—155
Infeasible linear programs 2 25—26 177 178 181—183
Infeasible-interior-point algorithms 2 11—12 81 107—125 133 178 180 183 188 189
Infeasible-interior-point algorithms, convex programming and 166
Infeasible-interior-point algorithms, finite termination and 146
Infeasible-interior-point algorithms, LCP form of 158
Infeasible-interior-point algorithms, termination test for 186—188
Integer programming 22 57
Integer programming, software for 257
Interior — Point Methods Online 174 257
Iteration sequence, convergence of 103 144—145 162
Iteration sequence, limit points of 100—104 108 121 123 127 186
Jacobian 6 13 127 129 164 198 241
Karmarkar’s 18 41 44 65
Karmarkar’s algorithm 1 17—18 41 49 53 58 65
Karmarkar’s algorithm, complexity of 18 42 50 62
Karush Kuhn Tucker (KKT) conditions 3—5 7 9 13 19 23—25 45—47 56 83 147 158 161 170 171 175 179 208 226—229 236 240—241 243
Karush Kuhn Tucker (KKT) conditions, for convex programming 164
Karush Kuhn Tucker (KKT) conditions, for convex quadratic programming 163
Karush Kuhn Tucker (KKT) conditions, sufficiency of 24 47 132 242—243
Khachiyan’s algorithm see “Ellipsoid algorithm”
Lagrange multipliers 4 241 243
Lagrangian function 165
LAPACK 248
Line search heuristics 80
Linear complementarity problem (LCP), monotone 13 14 43 109 139 154 157—162 167
Linear complementarity problem (LCP), monotone, definition of 157—158
Linear complementarity problem (LCP), monotone, equivalent formulations of 13 160—162
Linear complementarity problem (LCP), monotone, relationship to convex quadratic programming 13 163—164 171—173
Linear complementarity problem (LCP), monotone, strict complementarity and 162
Linear convergence, Q-linear 111 121 140 252
Linear convergence, R-linear 111 121 253
Linear least-squares problems 17 147 224 250
Linear programming, general references for 21 257
LIPSOL 198 204 219 232 260—261
Logarithm, natural 61 68 70 143 245—246
LOQO 198 232 261
Mehrotra’s predictor-corrector algorithm 2 14—16 85 193—208 210 234
Mehrotra’s predictor-corrector algorithm, motivation for 194—195
Mehrotra’s predictor-corrector algorithm, superquadratic convergence of 198—199
Mehrotra’s predictor-corrector algorithm, variants of 204—207
Minimum-degree orderings 213—216 235 260 262
Minimum-local-fill orderings 215 216 259 261
Mixed monotone linear complementarity problem (mLCP) 160—164 174 179 189 191 227
Mixed monotone linear complementarity problem (mLCP), step equations for 161
Mixed monotone linear complementarity problem (mLCP), strictly complementary solutions of 162 179 181 182 244—245
MPS input format 258
NEOS Server 257 263
Nested-dissection orderings 216 235
NETLIB 190 207
Network optimization 21 58 234
Network optimization, software for 257
Newton Barrier XPRESS — MP 261—262
Newton step, pure 6—8 12 15 44 127—135 137 138 154 174 194—197 199 200 202 206 207 249
Newton’s method 4 6 12 14 41 83 127 136 149 158 165
Newton’s method, Kantorovich analysis of 127 129
Nonconvex problems 14
Nondegenerate solution 13 199
Nonlinear complementarity problems, monotone 14 43 157 167
Nonlinear equations 6 12 198
Nonnegative orthant 6 11 13 33
Normal equations form of step equations 16—17 210 215 220 221 228- 234 259 260 262 sparse”)
Opening the cone 137—139
Optimization problems 1 60 239
Optimization problems, constrained 3 4 39 45 104 240
Optimization problems, global solutions of 240 242
Optimization problems, local solutions of 240 242
Optimization problems, unconstrained 149
Order notation 239
Ordinary differential equations 92 199
orthogonal matrices 155 246 247
OSL 262—263
Pairwise products 7—9 11 36 37 79 84—86 89 109 141 196 197 204 205
Partition 27—29 32 56 121 128 131 145—149 217
Path-following algorithms 2 9—10 14 50 107 121 144 174 203 217
Path-following algorithms, complexity of 61—62 68 84 95—96 100 159
Path-following algorithms, finite termination and 146
Path-following algorithms, homotopy methods and 9
Path-following algorithms, long-step 10 43 85 90 96—100 102 103 109
Path-following algorithms, motivation for 83
Path-following algorithms, predictor-corrector (Mizuno — Todd-Ye) 10 44 84 91—96 102 103 105
Path-following algorithms, relationship to potential-reduction algorithms 78 81
Path-following algorithms, short-step 10 43 84—91 102 104
Path-following algorithms, strictly complementary limit points of 181
PCX 198 258 263
Permutation matrices 54 211 212 248
Polynomial algorithms 50 52 57 58 60 63 135 polynomial”)
Positive definite matrices 211 (see also “Semidefinite matrices”)
Positive semidefinite matrices 13 19
Potential function 10
Potential function, Tanabe — Todd — Ye, quadratic approximation to 70—78
Potential function, Tanabe — Todd — Ye, relationship to 67 69
Potential function, Tanabe — Todd — Ye, SDP form of 171
Potential function, Tanabe — Todd-Ye 11 19 44 65—81
Potential-reduction algorithms 2 10—44 65—81
Potential-reduction algorithms, centrality of iterates 78—79
Potential-reduction algorithms, complexity of 70 77—80 84
Potential-reduction algorithms, practical variants of 80
Potential-reduction algorithms, pure primal 62 81
Predictor steps 84 92—96 105 135 194
Preprocessing see “Presolving”
Presolving 209 220 230 232
Primal degenerate linear programs 174
Problem data 51 59 60 152 255
Problem data, definition of 51
Problem data, integer 51 54 56 58 63
Problem data, rational 51
Problem data, storage of 51 53
Problem dimension 58
Problem dimension, definition of 51
Procedure FT 55—57 128 147 152 154—155
Procedure FT, definition of 146—147
Procedure OB — D 151—152
Procedure OB — P 151
Q-order of convergence 142 144 154 252
Quadratic convergence 127 252
Quadratic programming, convex 2 13 14 19 131 133 134 157 160 163—164 174—175 261
Quadratic programming, convex, quadratically constrained 167 170
Quadratic programming, convex, relationship to LCP 13
Rank of matrices 246 249 250
Rank-deficient matrices 211 247
Rational arithmetic 52—54 57 59
Rational-number model 49 52 59—60 255
Rational-number model, emulated on Turing machine 52 54
Real-number (BSS) model 50 59 60 63
Remaining matrix 213 235
Renegar’s algorithm 41—42 44 53 65
Residuals 11 12 109 111 129 134 155 167 185—189 191 206 226 229
Roundoff error 59 60 62 217
Roundoff error, unit 212 221
Safe step 138—140 142
Schur complement 233 260
Self-concordancy 166 168
Self-dual linear programs 178—180 184 191
Self-dual linear programs, mLCP formulation of 180 184 243—245
Semidefinite matrices 158 163 174 210 218 240
Semidefinite programming (SDP) 13 157 167—171 174
Shamanskii’s algorithm 193 198—199
Sherman — Morrison — Woodbury formula 189 220 233 236 250—251 260
Simplex method 1 32 33 225 232 234
Simplex method, complexity of 17 49 50 57
Simplex method, hot-starting of 225
Simplex method, Klee — Minty example 18 57
Simplex method, performance of 17
Ðåêëàìà