Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Wright S. J. — Primal-dual interior-point methods
Wright S. J. — Primal-dual interior-point methods



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Primal-dual interior-point methods

Автор: Wright S. J.

Аннотация:

In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1987

Количество страниц: 310

Добавлена в каталог: 05.11.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Simplex method, software for      257
Simplex method, vertex solutions and      33 150
Singular value decomposition (SVD)      246—247
Skew-symmetric matrices      179 191 243
Slack variables      3 22 46 163 226 227
Software for primal-dual methods      2 17 22 32 107 193 204 207 209—210 215 230—232 257-263
Solution set, boundedness of      26—27 177 183 184 237
Solution set, closedness of      24
Solution set, dual ($\OMEGA_{D}$)      24
Solution set, existence of      24—26
Solution set, nonemptiness of      26—27
Solution set, primal ($\Omega_{P}$)      24 56
Solution set, primal-dual ($\Omega$)      24 255
Solution set, unboundedness of      217 230
Sparse matrices      16 17 164 189 209
Sparse matrices, storage of      253—254
Spurious solutions      5 7 12
Standard form      2 13 22—23 47 65 107 124
Standard form, dual of      3
Standard form, transformation to      22 46 229
Starting points, feasible      107
Starting points, feasible, expense of calculating      177
Starting points, feasible, for HSD formulation      184
Starting points, infeasible      11—12 115 177
Starting points, infeasible, and HSD formulation      183
Starting points, infeasible, and simplified HSD formulation      183
Starting points, infeasible, hot starts      224—225
Starting points, infeasible, polynomial complexity and      108 115 117—118 125
Starting points, infeasible, practical choice of      224—225
Step equations      16 210
Step equations, for convex programming      165
Step equations, from infeasible points      12 104 129
Step equations, generic (with centering)      8 71
Step equations, ill conditioning of      17
Step equations, iterative solution of      234
Step equations, unique solution of      32
Step length, lower bound on, for Algorithm IPF      118—120
Step length, lower bound on, for Algorithm LPF      97—100 137
Step length, lower bound on, for Algorithm PC      94—95 105
Strict complementarity      21 101—103 121 123 144—146 148 150 162 217 241 244-245
Strict complementarity, example of      28
Strict complementarity, for LCP      162 245
Strictly feasible set, boundedness of solution set and      26—27 30—31 237
Strictly feasible set, dual      26
Strictly feasible set, emptiness of      29 107 124
Strictly feasible set, emptiness of, infeasible starting points and      30
Strictly feasible set, monotone LCP and      159
Strictly feasible set, primal      26
Strictly feasible set, primal-dual ($\mathcal{F}^{0}$)      5—10 18 19 29—31 55 66 67 71 72 83—85 91 94—96 99 101 123 144 146 177 181 237
Strongly polynomial algorithms      58 63
Sufficient decrease condition      108 110 124 125 166 186
Superlinear convergence      2 10 12—13 43 96 109 127 128 135—145 154 155 162 171 252
supernodes      214—215 234 259 260
Superquadratic convergence      198 199
Surplus variables      180 184
Symmetric indefinite matrices, factorizations of      17 220—224 229
Symmetric indefinite matrices, factorizations of, Bunch Parlett      222—223 234
Symmetric indefinite matrices, factorizations of, Bunch — Kaufman      222 223
Symmetric indefinite matrices, factorizations of, sparse Bunch Parlett      223—224
Symmetric matrices      13 16 17 19 210 211 254
Taylor series approximation      200 201 203 245
Termination criteria      209 225—226
Theorem of the alternative      27
Trajectories to solution set      14—16 200 201 203 207
Trajectories to solution set, curvature of      15 202
Trajectory-following algorithms      193 202 207
Triangle inequality      116
Triangular matrices      211 234 247
Turing machine      52 54 59 62 254—255
Unboundedness of objective function      46 177 231
Variational inequality, monotone      167—168
Vertex      33—34 54 55
Vertex solution      56 57 150 224 225 258 optimal”)
World Wide Web      45 174 210 232 257
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте